Synthesis and photocatalytic effects of TiO2-Ag on antibiotic-resistant bacteria

Autores

  • Iracema Nascimento de Oliveira Universidade Tiradentes
  • Raphaella Ingrid Santana Oliveira Universidade Tiradentes
  • Eduarda Bezerra Pereira Universidade Federal de Sergipe
  • Francine Ferreira Padilha Universidade Tiradentes
  • Silvia Maria Egues Universidade Tiradentes
  • Maria Lucila Hernández-Macedo Universidade Tiradentes

DOI:

https://doi.org/10.53660/400.prw1014B

Palavras-chave:

TiO2-Ag, Photocatalysis, UV, Visible light, MRSA

Resumo

Titanium dioxide (TiO2) is a semiconductor metal oxide extensively studied due to its photocatalytic properties that can be applied in various areas. However, the catalytic performance of TiO2 is limited at the UV spectrum, and the silver doping to titanium dioxide (Ag-TiO2) can increase the catalytic performance for visible light. In this work, Ag-doped TiO2 nanoparticles were synthesized to evaluate photocatalytic activity against sensitive and methicillin-resistant Staphylococcus aureus frequently associated with skin infections. The sol-gel method followed by Ag doping was applied to NPs synthesis. NPs were characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), UV-vis diffuse reflectance spectrophotometry (DRS), Semi-quantitative energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. FTIR and EDS results confirmed the doping of silver in TiO2. MEV analysis evidenced spherical nanoparticles between 8.5 - 25.6 nm. The TiO2 nanoparticles combined with silver improved the antimicrobial effect of TiO2 under visible light at 180 min, however, the greatest antimicrobial effect was observed under UV light at 120 min.

Downloads

Não há dados estatísticos.

Referências

ALI, T. et al. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Materials Chemistry and Physics, v. 212, p. 325–335, 2018.

BERKOW, E. L.; LOCKHART, S. R. Fluconazole resistance in Candida species: a current perspective. Infection and Drug Resistance, v. 10, p. 237–245, 2017.

BOXI, S. S.; MUKHERJEE, K.; PARIA, S. Ag doped hollow TiO 2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology, v. 27, n. 8, p. 085103, 2016.

D, B. et al. Nanostructured TiO2 and TiO2-Ag antimicrobial thin films. TechConnect Briefs, v. 3, n. 2011, p. 271–274, 2011.

GHOSH, M. et al. Enhanced photocatalytic and antibacterial activities of mechanosynthesized TiO2–Ag nanocomposite in wastewater treatment. Journal of Molecular Structure, v. 1211, p. 128076, 2020.

GOPINATH, K. et al. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity. Superlattices and Microstructures, v. 92, p. 100–110, 2016.

GUERRERO, V. et al. Síntesis y Caracterización de Nanopartículas de Dióxido de Titanio Obtenidas por el Método de Sol-Gel. Revista Politécnica, v. 36, p. 7–13, 2015.

GUPTA, S. M.; TRIPATHI, M. A review of TiO2 nanoparticles. Chinese Science Bulletin, v. 56, n. 16, p. 1639–1657, 2011.

HAIDER, A. J.; JAMEEL, Z. N.; AL-HUSSAINI, I. H. M. Review on: Titanium Dioxide Applications. Energy Procedia, v. 157, p. 17–29, 2019.

HAMPEL, B. et al. Application of TiO2-Cu Composites in Photocatalytic Degradation Different Pollutants and Hydrogen Production. Catalysts, v. 10, n. 1, p. 85, 2020.

HERNÁNDEZ ENRÍQUEZ, J. M. et al. Síntesis y caracterización de nanopartículas de N-TiO2 - Anatasa. Superficies y vacío, v. 21, n. 4, p. 1–5, 2008.

HU, S. et al. Hydrothermal Synthesis of Well-dispersed Ultrafine N-Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity under Visible Light. Journal of Physics and Chemistry of Solids - J PHYS CHEM SOLIDS, v. 71, p. 156–162, 2010.

KHAN, I.; SAEED, K.; KHAN, I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, v. 12, n. 7, p. 908–931, 2019.

KHAN, M. M. et al. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A, v. 2, n. 3, p. 637–644, 2014.

LAURENT, S. et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, v. 108, n. 6, p. 2064–2110, 2008.

LIMO, M. J. et al. Interactions between Metal Oxides and Biomolecules. 2018.

LIU, Y. et al. A comparison of N-doped TiO 2 photocatalysts preparation methods and studies on their catalytic activity: Comparison of N-doped TiO 2 photocatalyst preparation methods and activities. Journal of Chemical Technology & Biotechnology, v. 88, n. 10, p. 1815–1821, 2013.

MARTINEZ-GUTIERREZ, F. et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, v. 6, n. 5, p. 681–688, 2010.

MENDES, D. T. S. L. et al. Estudo da molhabilidade de nanotubos de TiO2 incorporados com nanopartículas de Ag e ZnO / Study of the wetness of TiO2 nanotubes incorporated with Ag and ZnO nanoparcules. Brazilian Journal of Development, v. 6, n. 10, p. 74439–74453, 2020.

MOONGRAKSATHUM, B.; CHIEN, M.-Y.; CHEN, Y.-W. Antiviral and Antibacterial Effects of Silver-Doped TiO 2 Prepared by the Peroxo Sol-Gel Method. Journal of Nanoscience and Nanotechnology, v. 19, n. 11, p. 7356–7362, 2019.

NEILLY, D. et al. Necrotising fasciitis in the North East of Scotland: a 10-year retrospective review. The Annals of The Royal College of Surgeons of England, v. 101, n. 5, p. 363–372, 2019.

PEIRIS, M. K. et al. Biosynthesized silver nanoparticles: are they effective antimicrobials? Memórias do Instituto Oswaldo Cruz, v. 112, n. 8, p. 537–543, 2017.

PETRONELLA, F. et al. Chapter 18 - Photocatalytic Application of Ag/TiO2 Hybrid Nanoparticles. Em: MOHAPATRA, S.; NGUYEN, T. A.; NGUYEN-TRI, P. (Eds.). Noble Metal-Metal Oxide Hybrid Nanoparticles. Micro and Nano Technologies. [s.l.] Woodhead Publishing, p. 373–394, 2019.

PFALZGRAFF, A.; BRANDENBURG, K.; WEINDL, G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Frontiers in Pharmacology, v. 9, p. 281, 2018.

RATHORE, N. et al. Optical, structural and morphological properties of Fe substituted rutile phase TiO2 nanoparticles. Physica B: Condensed Matter, v. 600, p. 412609, 2021.

RIBEIRO, V. A. DOS S.; FERRARI, A. M.; TAVARES, C. R. G. Fotocatálise aplicada ao tratamento de efluentes de lavanderia de jeans: comparação entre TiO2 e ZnO na eficiência de remoção de cor / Photocatalysis applied tolaundry wastewater treatment: comparison between TiO2 and ZnO on the efficiency of color removal. Brazilian Journal of Business, v. 2, n. 3, p. 2788–2798, 2020.

SEERY, M. K. et al. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, v. 189, n. 2–3, p. 258–263, 2007.

SOUZA, L. F. DE et al. Avaliação da Atividade Bacteriostática de Carvão Ativado Impregnado com Prata Frente à Bactéria Pseudomonas aeruginosa. Revista Processos Químicos, v. 13, n. 25, p. 71–78, 2019.

TRUPPI, A. et al. Visible-Light-Active TiO2-Based Hybrid Nanocatalysts for Environmental Applications. Catalysts, v. 7, n. 4, p. 100, 2017.

VIJAYALAKSHMI, U. et al. Preparation and evaluation of the cytotoxic nature of TiO2 nanoparticles by direct contact method. International Journal of Nanomedicine, p. 31, 2015.

WANG, H. et al. Au/TiO 2 /Au as a Plasmonic Coupling Photocatalyst. The Journal of Physical Chemistry C, v. 116, n. 10, p. 6490–6494, 2012.

WANG, J. et al. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Scientific Reports, v. 6, n. 1, p. 32699, 2016.

YADAV, H. M. et al. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, v. 280, p. 32–38, 2014.

ZHANG, X. et al. Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells. Materials Science and Engineering: C, v. 82, p. 110–120, 2018.

Downloads

Publicado

2023-05-08

Como Citar

Oliveira, I. N. de ., Oliveira, R. I. S. ., Pereira, E. B. ., Padilha, F. F., Egues, S. M., & Hernández-Macedo, M. L. (2023). Synthesis and photocatalytic effects of TiO2-Ag on antibiotic-resistant bacteria . Peer Review, 5(8), 45–61. https://doi.org/10.53660/400.prw1014B

Edição

Seção

Artigos