Tucumã of Pará oil: chemical profile, biological activities, and methods of extraction

Autores

DOI:

https://doi.org/10.53660/820.prw2249

Palavras-chave:

Astrocaryum vulgare, Chemical profile, Biological activities, Amazon fruit

Resumo

The present work research involves a systematic review of the chemical profile and biological activities of vegetable oil from the Astrocaryum species identified in Brazilian amazon rainforest. Astrocaryum consists of a important group of botanical species that have economic value in the national and international fruit market. Furthermore, the species has application in several areas such as pharmacology, biotechnology, and medicine. In folk medicine, species such as Astrocaryum aculeatum M. and Astrocaryum vulgare M. are used in prevention of diabetes and inflammatory diseases. The species of Astrocaryum are natural source of vegetable oil and are rich in bioactive compounds belonging to the classes of carotenoids, of these compounds β-carotene is the most abundant. The cytoprotective, anti-inflammatory and antimicrobial activities of vegetable oils from the Astrocaryum species in Brazilian amazon rainforest have been described in previous research.

Downloads

Não há dados estatísticos.

Referências

ABREU, L. F.; CARDOSO, T. N.; DANTAS, K. DAS G. F.; OLIVEIRA, M. DO S. P. Prospecção e Quantificação de Carotenoides em Frutos de Tucumã-do-Pará. In: Embrapa Amazônia Oriental: Boletim de Pesquisa e Desenvolvimento. Anais [...] Belém: EMPRABA, 2020, p. 1–28.

ACHARYA, Y. The impact of vitamin A supplementation in childhood on adult outcomes: An exploration of mechanisms, timing of exposure, and heterogeneous effects. Social Science and Medicine, v. 201, p. 95–102, 2018. DOI: https://doi.org/10.1016/j.socscimed.2018.02.003.

ACOSTA-ESTRADA, B. A.; GUTIÉRREZ-URIBE, J. A.; SERNA-SALDÍVAR, S. O. Bound phenolics in foods, a review. Food chemistry, v.152, p. 46-55, 2014. DOI: https://doi.org/10.1016/j.foodchem.2013.11.093.

ALEXANDRE, E. C. F.; SILVEIRA, E. V.; DE SOUZA CASTRO, C. F.; SALES, J. F.; DE OLIVEIRA, L. C. S.; VIANA, L. H.; BARBOSA, L. C. A. Synthesis, characterization, and study of the thermal behavior of methylic and ethylic biodiesel produced from tucumã (Astrocaryum huaimi Mart.) seed oil. Fuel, v.161, p.233-238, 2015. DOI: https://doi.org/10.1016/j.fuel.2015.08.062.

ANTUNES, L.E.C.; GONÇALVES, E.D.; TREVISIAN, R. Postharvest changes of pectin and phenolic compounds in blackberries. Revista Brasileira de Agrociência, n.1, v.12, p. 57–61, 2006.

AZEVEDO, S. C. M.; VIEIRA, L. M.; MATSUURA, T.; DA SILVA, G. F.; DUVOISIN, S.; ALBUQUERQUE, P. M. Study of the conservation of the nutritional properties of in natura Tucumã pulp (Astrocaryum aculeatum) using vacuum packaging. Brazilian Journal of Food Technology, v. 20, p.1–9, 2017. DOI: https://doi.org/10.1590/1981-6723.10716.

BAI, C.; DALLASEGA, P.; ORZES, G.; SARKIS, J. Industry 4.0 technologies assessment: A sustainability perspective. International journal of production economics, v. 229, p. 107776, 2020. DOI: https://doi.org/10.1016/j.ijpe.2020.107776.

BALDISSERA, M. D.; SOUZA, C. F.; GRANDO, T. H.; COSSETIN, L. F.; SAGRILLO, M. R.; NASCIMENTO, K.; SILVA, A.S.; MACHADO, A.K.; CRUZ, I.B.M.; STEFANI, L.M.; KLEIN, B.; WAGNER, R; MONTEIRO, S. G. Antihyperglycemic, antioxidant activities of tucumã oil (Astrocaryum vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: New natural source to treat hyperglycemia. Chemico-biological interactions, v. 270, p. 51-58, 2017. DOI: https://doi.org/10.1016/j.cbi.2017.04.001.

BELWAL, T.; CHEMAT, F.; VENSKUTONIS, P. R.; CRAVOTTO, G.; JAISWAL, D. K.; BHATT, I. D.; DEVKOTA, H.P.; LUO, Z. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends in Analytical Chemistry, v. 127, p. 115895, 2020. DOI: https://doi.org/10.1016/j.trac.2020.115895.

BOEIRA, C. P.; PIOVESAN, N.; FLORES, D. C. B.; SOQUETTA, M. B.; LUCAS, B. N.; HECK, R. T.; ALVES, J.M.; CAMPAGNOL, P.C.B.; SANTOS, D.; FLORES, E.M.M.; ROSA, C.S.; TERRA, N. N. Phytochemical characterization and antimicrobial activity of Cymbopogon citratus extract for application as natural antioxidant in fresh sausage. Food chemistry, v. 319, p. 126553, 2020. DOI: https://doi.org/10.1016/j.foodchem.2020.126553.

BONY, E.; BOUDARD, F.; BRAT, P.; DUSSOSSOY, E.; PORTET, K.; POUCHERET, P.; ...; MICHEL, A. Awara (Astrocaryum vulgare M.) pulp oil: Chemical characterization, and anti-inflammatory properties in a mice model of endotoxic shock and a rat model of pulmonary inflammation. Fitoterapia, n.1, v. 83, p. 33-43, 2012. DOI: https://doi.org/10.1016/j.fitote.2011.09.007.

BONY, E.; BOUDARD, F.; DUSSOSSOY, E.; PORTET, K.; BRAT, P.; GIAIMIS, J.; MICHEL, A. Chemical composition and anti-inflammatory properties of the unsaponifiable fraction from awara (Astrocaryum vulgare M.) pulp oil in activated J774 macrophages and in a mice model of endotoxic shock. Plant foods for human nutrition, n.4, v. 67, p.384-392, 2012. DOI: https://doi.org/10.1007/s11130-012-0323-z.

BRAZIL FLORA GROUP (2021): Brazilian Flora 2020 Project - Projeto Flora do Brasil 2020. v393.274. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Dataset/Checklist. doi:10.15468/1mtkaw.

CARDULLO, N.; MUCCILLI, V.; PULVIRENTI, L.; CORNU, A.; POUYSÉGU, L.; DEFFIEUX, D.; QUIDEAU, S.; TRINGALI, C. C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: a study of α-amylase inhibition. Food Chemistry, v. 313, p.126099, 2020. DOI: https://doi.org/10.1016/j.foodchem.2019.126099.

CHEMAT, F.; VIAN, M. A.; FABIANO-TIXIER, A. S.; NUTRIZIO, M.; JAMBRAK, A. R.; MUNEKATA, P. E.; LORENZO, J.M.; BARBA, F.J.; BINELA, A.; CRAVOTTO, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry, n. 18, v. 22, 2020, p. 2325-2353, 2020. DOI: https://doi.org/10.1039/c9gc03878g.

CHEN, R.; RONG, LI, Y.; JUN CHEN, J.; LU, C. LI. A review for natural polysaccharides with anti-pulmonary fibrosis properties, which may benefit to patients infected by 2019-nCoV. Carbohydrate Polymers, v. 247, p.116740, 2020. DOI: https://doi.org/10.1016/j.carbpol.2020.116740.

COSTA, B. E. T.; SANTOS, O. V. D.; CORRÊA, N. C. F.; FRANÇA, L. F. D. Comparative study on the quality of oil extracted from two tucumã varieties using supercritical carbon dioxide. Food Science and Technology, v. 36, p.322-328, 2016. DOI: https://doi.org/10.1590/1678-457X.0094.

CUNHA, V. M. B.; DA SILVA, M. P.; DE SOUSA, S. H. B.; DO NASCIMENTO BEZERRA, P.; MENEZES, E. G. O.; DA SILVA, N. J. N.; BANNA, D.A.D.S.; ARAÚJO, M.E.; CARVALHO JUNIOR, R. N. Bacaba-de-leque (Oenocarpus distichus Mart.) oil extraction using supercritical CO2 and bioactive compounds determination in the residual pulp. The Journal of Supercritical Fluids, v. 144, p.81-90, 2019. DOI: https://doi.org/10.1016/j.supflu.2018.10.010.

De ROSSO, V. V.; MERCADANTE, A. Z. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, n. 13, v. 55, p. 5062–5072, 2007. DOI: https://doi.org/10.1021/jf0705421.

DIDONET, A. A.; FERRAZ, I. D. K. Fruit trade of tucuma (Astrocaryum aculeatum G. Mey-Arecaceae) at local marketplaces in Manaus (Amazonas, Brazil). Revista Brasileira de Fruticultura, n. 2, v. 36, p.353-362, 2014. DOI: https://doi.org/10.1590/0100-2945-108/13.

Dos SANTOS, M. DE F. G.; MAMEDE, R. V. S.; RUFINO, M. DO S. M.; DE BRITO, E. S.; ALVES, R. E. Amazonian native palm fruits as sources of antioxidant bioactive compounds. Antioxidants, n. 3, v. 4, p. 591–602, 2015. DOI: https://doi.org/10.3390/antiox403059.

DUARTE, L. E. A. Principales Plantas Útiles Amazonía Colombiana.1st ed. Bogotá: CIAF, 1979.

FALCÃO, A. DE O.; SPERANZA, P.; UETA, T.; MARTINS, I. M.; MACEDO, G. A.; MACEDO, J. A. Antioxidant potential and modulatory effects of restructured lipids from the Amazonian palms on Liver cells. Food Technology and Biotechnology, n.4, v. 55, p. 553–561, 2017. DOI: https://doi.org/10.17113/ftb.55.04.17.5157.

FERREIRA DE OLIVEIRA, S.; PEREIRA DE MOURA NETO, J.; RAMOS DA SILVA, K. E. A review on the morphology and pharmacological properties of the species Astrocaryum aculeatum Meyer and Astrocaryum vulgare Mart. Scientia Amazonia, n. 3, v. 7, p. 18–28, 2018.

FERREIRA, E. DE S.; LUCIEN, V. G.; AMARAL, A. S.; SILVEIRA, C. DA S. Caracterização Físico-Química do Fruto e do Óleo Extraído de Tucumã (Astrocaryum vulgare Mart). Alimentos e Nutrição, n.4, v.19, 427–433, 2009.

FIDELIS, M.; DO CARMO, M. A. V.; DA CRUZ, T. M.; AZEVEDO, L.; MYODA, T.; FURTADO, M. M.; ...; GRANATO, D. Camu-camu seed (Myrciaria dubia)–from side stream to an antioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food chemistry, v. 310, p. 125909, 2020. DOI: https://doi.org/10.1016/j.foodchem.2019.125909.

FRANK, A. G.; DALENOGARE, L. S.; AYALA, N. F. Industry 4.0 on procurement and supply management: A conceptual and qualitative analysis. Int. J. Prod. Econ., v. 210, p.15-26, 2019. DOI: https://doi.org/10.1016/j.ijpe.2019.01.004.

GHAEDI, E.; FOSHATI, S.; ZIAEI, R.; BEIGREZAEI, S.; KORD-VARKANEH, H.; GHAVAMI, A.; MIRAGHAJANI, M. Effects of phytosterols supplementation on blood pressure: A systematic review and meta-analysis. Clinical Nutrition, n.9, v. 39, p.2702-2710, 2019. DOI: https://doi.org/10.1016/j.clnu.2019.12.020.

GHOBAKHLOO, M. Industry 4.0, digitization, and opportunities for sustainability. Journal of cleaner production, v. 252, p. 119869, 2020. DOI: https://doi.org/10.1016/j.jclepro.2019.119869.

HAMMOND, B. R.; RENZI, L. M. Carotenoids. Advances in Nutrition, n. 4, v.4, p.474–476, 2013. DOI: https://doi.org/10.3945/an.113.004028.

HANNAN, M. A.; SOHAG, A. A. M.; DASH, R.; HAQUE, M. N.; MOHIBBULLAH, M.; OKTAVIANI, D. F.; …; MOON, I. S. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine, v.69, p.153201, 2020. DOI: https://doi.org/10.1016/j.phymed.2020.153201.

HOU, Y.; CARNE, A.; MCCONNELL, M.; BEKHIT, A. A.; MROS, S.; AMAGASE, K.; BEKHIT, A. E. D. A. In vitro antioxidant and antimicrobial activities, and in vivo anti-inflammatory activity of crude and fractionated PHNQs from sea urchin (Evechinus chloroticus). Food chemistry, v.316, p.126339, 2020. DOI: https://doi.org/10.1016/j.foodchem.2020.126339.

JESUS, M. S.; BALLESTEROS, L. F.; PEREIRA, R. N.; GENISHEVA, Z.; CARVALHO, A. C.; PEREIRA-WILSON, C.; ...; DOMINGUES, L. Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity. Food chemistry, v. 316, p.126298, 2020. DOI: https://doi.org/10.1016/j.foodchem.2020.126298.

JIN, M.; TANG, R.; JI, Y.; LIU, F.; GAO, L.; HUISINGH, D. Impact of advanced manufacturing on sustainability: An overview of the special volume on advanced manufacturing for sustainability and low fossil carbon emissions. Journal of cleaner production, v. 161, p.69-74, 2017. DOI: https://doi.org/10.1016/j.jclepro.2017.05.101.

JOBIM, M. L.; SANTOS, R. C. V.; DOS SANTOS ALVES, C. F.; OLIVEIRA, R. M.; MOSTARDEIRO, C. P.; SAGRILLO, M. R.; … DA CRUZ, I. B. M. Antimicrobial activity of Amazon Astrocaryum aculeatum extracts and its association to oxidative metabolism. Microbiological Research, v. 169, p. 314 – 323, 2014. DOI: https://doi.org/10.1016/j.micres.2013.06.006.

KAHN, F. The genus Astrocaryum (Arecaceae). Revista Peruana de Biología, v. 15, p. 29-46, 2008.

KAHN, F.; MOUSSA, F. Economic importance of Astrocaryum aculeatum (Palmae) in Brazilian Amazonia. Acta Botanica Venezuelica, n.11, v.22, p. 237–245, 1999.

KEYS, A.; ANDERSON, J.T.; GRANDE, F.; Prediction of Serum-Cholesterol Responses of Man to Changes in Fats in the Diet. Lance, v. 273, p.959-966, 1957.

KNEZ, Ž.; PANTIĆ, M.; CÖR, D.; NOVAK, Z.; HRNČIČ, M. K. Are supercritical fluids solvents for the future?. Chemical Engineering and Processing-Process Intensification, v. 141, p.107532, 2019. DOI: https://doi.org/10.1016/j.cep.2019.107532.

LUO, J.; CAI, W.; WU, T.; XU, B. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chemistry, v. 201, p. 350-360, 2016. DOI: https://doi.org/10.1016/10.1016/j.foodchem.2016.01.101.

OLIVEIRA, L.D.S.; RAMOS, S.L.F.; LOPES, M.T.G.; Dequigiovanni, G.; VEASEY, E.A.; MACÊDO, J. L. V. DE.; BATISTA, J.S.; FORMIGA, K.M.; LOPES, R. Genetic diversity, and structure of Astrocaryum jauari (Mart.) palm in two Amazon River basins. Crop Breeding and Applied Biotechnology, n. 3, v. 14, p.166–173, 2014. DOI: https://doi.org/10.1590/1984-70332014v14n3a25.

MAMBRIM, M. C. T.; BARRERA-ARELLANO, D. Caracterización de aceites de frutos de palmeras de la región amazónica del Brasil. Grasas y Aceites, n. 3, v. 48, p. 154–158, 1997. DOI: https://doi.org/10.3989/gya.1997.v48.i3.783.

MARRONATO, A.; SANTOS DE ALMEIDA, T.; PORTUGAL MOTA, J.; AREIAS DE OLIVEIRA, C.; ROSADO, C.; ROBLES VELASCO, M. V. Comparison of sunscreens Containing Titanium Dioxide Alone or In Association with Cocoa, Murumuru or Cupuaçu Butters. Journal Biomedical and Biopharmaceutical Research, n. 2, v. 13, p.229–244, 2016. DOI: https://doi.org/10.19277/bbr.13.2.141.

MARTILLANES, S.; ROCHA-PIMIENTA, J.; GIL, M. V.; AYUSO-YUSTE, M. C.; DELGADO-ADÁMEZ, J. Antioxidant and antimicrobial evaluation of rice bran (Oryza sativa L.) extracts in a mayonnaise-type emulsion. Food chemistry, v. 308, p.125633, 2020. DOI: https://doi.org/10.1016/j.foodchem.2019.125633.

MATOS, K.A.N.; LIMA, D.P.; BARBOSA, A.P.P.; MERCADANTE, A.Z.; CHISTÉ, R.C. Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, v.272, p.216-221, 2019. DOI: https://doi.org/10.1016/j.foodchem.2018.08.053.

MEZZOMO, N.; MARTÍNEZ, J.; FERREIRA, S.R.S. Supercritical fluid extraction of peach (Prunus persica) almond oil: Kinetics, mathematical modeling and scale-up. The Journal of Supercritical Fluids, v. 51, p.10–16, 2009. DOI: https://doi.org/10.1016/j.supflu.2009.07.008.

MIAO, L.; TAO, H.; PENG, Y.; WANG, S.; ZHONG, Z.; EL-SEEDI, H.; ...; XIAO, J. The anti-inflammatory potential of Portulaca oleracea L.(purslane) extract by partial suppression on NF-κB and MAPK activation. Food chemistry, v. 290, p. 239-245, 2019. DOI: https://doi.org/10.1016/j.foodchem.2019.04.005.

MICHALAK, I.; CHOJNACKA, K.; SAEID, A. Plant growth biostimulants, dietary feed supplements and cosmetics formulated with supercritical CO2 algal extracts. Molecules, n.1,v. 22, p. 66, 2017. DOI: https://doi.org/10.3390/molecules22010066.

MOHAMED, O.; KHALIL, A.; WANG, J. Modeling and control of supercritical and ultra-supercritical power plants: A review. Energies, n. 11, v. 13, p. 2935, 2020. DOI: https://doi.org/10.3390/en13112935.

OLIVEIRA, L. D. S.; RAMOS, S. L. F.; LOPES, M. T. G.; DEQUIGIOVANNI, G.; VEASEY, E. A.; OLIVEIRA, N. P.; DE OLIVEIRA, M. DO S. P.; MOURA, E. F. Variability, and genetic divergence among fiber palm tree (Astrocaryum vulgare mart.) genotypes for fruit yield by RAPD markers. Revista Brasileira de Fruticultura, n.1, v.34, p. 216–226, 2012. DOI: https://doi.org/10.1590/S0100-29452012000100029.

PADRELA, L.; RODRIGUES, M. A.; DUARTE, A.; DIAS, A. M.; BRAGA, M. E.; DE SOUSA, H. C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals–a comprehensive review. Advanced drug delivery reviews, v.131, p.22-78, 2018. DOI: https://doi.org/10.1016/j.addr.2018.07.010.

PARDAUIL, J. J. R.; DE MOLFETTA, F. A.; BRAGA, M.; DE SOUZA, L. K. C.; FILHO, G. N. R.; ZAMIAN, J. R.; DA COSTA, C. E. F. Characterization, thermal properties, and phase transitions of Amazonian vegetable oils. Journal of Thermal Analysis and Calorimetry, v.127, p.1221–1229, 2017. DOI: https://doi.org/10.1007/s10973-016-5605-5.

PEREIRA, S. S. C.; BEZERRA, V. S.; FERREIRA, L. A. F.; LUCIEN, V. G.; CARIM, M. DE J. V.; GUEDES, M. C. Avaliações Físico-Químicas do Fruto de Urumuruzeiro (Astrocaryum murumuru). In: 3° Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel. Biodiesel: evolução tecnológica e qualidade. Anais [...] Lavras: UFLA, 2006, p. 576–580.

PINTO, R. H. H.; MENEZES, E. G. O.; FREITAS, L. C.; DE AGUIAR ANDRADE, E. H.; RIBEIRO-COSTA, R. M.; JÚNIOR, J. O. C. S.; JUNIOR, R. N. C. Supercritical CO2 extraction of uxi (Endopleura uchi) oil: Global yield isotherms, fatty acid profile, functional quality, and thermal stability. The Journal of Supercritical Fluids, v. 165, p.104932, 2020. DOI: https://doi.org/10.1016/j.supflu.2020.104932.

PIRES, F.C.S.; SILVA, A.P.S.; SALAZAR, M.A.R.; DA COSTA, W.A.; DA COSTA, H.S.C.; LOPES, A.S.; ROGEZ, H.; CARVALHO JUNIOR, R.N. Determination of process parameters and bioactive properties of the muruci pulp (Byrsonima crassifolia) extracts obtained by supercritical extraction. The Journal of Supercritical Fluids, v. 146, p. 128-35, 2019. DOI: https://doi.org/10.1016/j.supflu.2019.01.014.

RAMOS, S. L. F.; DEQUIGIOVANNI, G.; SEBBENN, A. M.; LOPES, M. T. G.; KAGEYAMA, P. Y.; DE MACÊDO, J. L. V.; …; VEASEY, E. A. Spatial genetic structure, genetic diversity, and pollen dispersal in a harvested population of Astrocaryum aculeatum in the Brazilian Amazon. BMC Genetics, n. 63, v.17, p.1–10, 2016. DOI: https://doi.org/10.1186/s12863-016-0371-8.

REBOREDO-RODRÍGUEZ, P.; GONZÁLEZ-BARREIRO, C.; CANCHO-GRANDE, B.; VALLI, E.; BENDINI, A.; GALLINA TOSCHI, T.; SIMAL-GANDARA, J. Characterization of virgin olive oils produced with autochthonous Galician varieties. Food Chemistry, v. 212, p.162-171, 2016. DOI: https://doi.org/10.1016/j.foodchem.2016.05.135.

RODRIGUES, A. M.; DARNET, S.; DA SILVA, L. H. M. Fatty acid profiles and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and Inaja (Maximiliana Maripa) fruits. Journal of the Brazilian Chemical Society, n.10, v.21, p.2000–2004, 2010. DOI: https://doi.org/10.1590/s0103-50532010001000028.

RODRIGUEZ-AMAYA, D.; KIMURA, M. HarvestPlus Handbook for Carotenoid Analysis. 1st ed. Washington: Breeding Crops for Better Nutrition, 2004.

ROLEIRA, F. M.; TAVARES-DA-SILVA, E. J.; VARELA, C. L.; COSTA, S. C.; SILVA, T.; GARRIDO, J.; BORGES, F. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, v.183, p.235-258, 2015. DOI: https://doi.org/10.1016/j.foodchem.2015.03.039.

SAGRILLO, M. R.; GARCIA, L. F. M.; DE SOUZA FILHO, O. C.; DUARTE, M. M. M. F.; RIBEIRO, E. E.; CADONÁ, F. C.; DA CRUZ, I. B. M. Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chemistry, v. 173, p. 741–748, 2015. DOI: https://doi.org/10.1016/j.foodchem.2014.10.067.

SANTOS, M. F. G.; ALVES, R. E.; BRITO, E. S.; SILVA, S. M.; SILVEIRA, M. R. S. Quality characteristis of fruits and oils of palms native to the Brazilian amazon. Revista Brasileira de Fruticultura, v.39, p.1–6, 2017. DOI: https://doi.org/10.1590/0100-29452017305.

SANTOS, M. F. G.; ALVES, R. E.; ROCA, M. Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. Grasas y Aceites, n. 3, v.66, p.1–8, 2015. DOI: https://doi.org/10.3989/gya.1062142.

SANTOS, M. M. R.; FERNANDES, D. S.; CÂNDIDO, C. J.; CAVALHEIRO, L. F.; DA SILVA, A. F.; DO NASCIMENTO, V. A..; …; HIANE, P. A. Physical-chemical, nutritional and antioxidant properties of tucumã (Astrocaryum huaimi Mart.) fruits. Semina:Ciencias Agrarias, n. 4, v.39, p.1517–1532, 2018. DOI: https://doi.org/10.5433/1679-0359.2018v39n4p1517.

SANTOS, M.F.G.; MARMESAT, S.; BRITO, E.S.; ALVES, R.E.; DOBARGANES, M.C. Major components in oils obtained from Amazonian palm fruits. Grasas y Aceites, n. 2, v.64, p.531-536, 2013. DOI: https://doi.org/10.3989/gya.023513.

SCHROTH, G.; DA MOTA, M.S.S.; LOPES, R. DE FREITAS, A.F. Extractive use, management and in situ domestication of weedy palm, Astrocaryum tucuma, in the central Amazon. Forest Ecology and Management, v. 202, p. 161–179, 2004. DOI: https://doi.org/10.1016/j.foreco.2004.07.026.

SILVA, M. P.; CUNHA, V. M. B.; SOUSA, S. H. B.; MENEZES, E. G. O.; BEZERRA, P. N.; DE FARIAS NETO FILHO, J. T.; ...; DE CARVALHO, R. N. Supercritical CO2 extraction of lyophilized açaí (Euterpe oleracea Mart.) pulp oil from three municipalities in the state of Pará, Brazil. Journal CO2 of Utilization, v.31, p. 226–234, 2019. DOI: https://doi.org/10.1016/j.jcou.2019.03.019.

SILVA, M.B.; PEREZ, V.H.; PEREIRA, N.R.; SILVEIRA, T.C.; DA SILVA, N.R.F.; ANDRADE, C.M.; SAMPAIO, R.M. Drying kinetic of tucuma fruits (Astrocaryum aculeatum Meyer): physicochemical and functional properties characterization. Journal of Food Science and Technology, v.55, p. 656–1666, 2018. DOI: https://doi.org/10.1007/sferreir13197-018-3077-2.

STAVROU, I. J.; CHRISTOU, A.; KAPNISSI-CHRISTODOULOU, C. P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food chemistry, v.269, p. 355-374, 2018. DOI: https://doi.org/10.1016/j.foodchem.2018.06.152.

TAHA, A.; SHARIFPANAH, F.; WARTENBERG, M.; SAUER, H. Omega-3 and Omega-6 polyunsaturated fatty acids stimulate vascular differentiation of mouse embryonic stem cells. Journal of Cellular Physiology, n. 10, v. 235(10), 7094–7106, 2020. DOI: https://doi.org/10.1002/jcp.29606.

THESS, A.; KLEIN, M.; NIENHAUS, K.; PREGGER, T. Global carbon surcharge for the reduction of anthropogenic emission of carbon dioxide. Energy, Sustainability and Society, n.1, v. 10, p. 1-9, 2020. DOI: https://doi.org/10.1186/s13705-020-0242-z.

WANG, Y.; HUANG, W.; SUO, J.; CHEN, X.; DING, K.; ZHANG, H. Antioxiditant and anti-inflammatory activities of an anti-diabetic polysaccharide extracted from Gynostemma pentaphyllum herb. International Journal of Biological Macromolecules, v. 145, p.484-491, 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2019.12.213.

WU, Y.; ZHANG, Z.; CHEN, T.; CHENG, C.; ZHANG, Z.; ZHOU, H.; LUO, P. Comparison of two Polygonum chinense varieties used in Chinese cool tea in terms of chemical profiles and antioxidant/anti-inflammatory activities. Food chemistry, v. 310, p.125840, 2020. DOI: https://doi.org/10.1016/j.foodchem.2019.125840.

ZABOT, G.L.; MORAES, M.N.; MEIRELES, M.A.A. Process integration for producing tocotrienols-rich oil and bixin-rich extract from annatto seeds: A techno-economic approach. Food and Bioproducts Processing, v. 109, p.122–138, 2018. DOI: http://dx.doi.org/10.1016/j.fbp.2018.03.007.

ZHANG, X.; CROWLEY, V. M.; WUCHERPFENNIG, T. G.; DIX, M. M.; CRAVATT, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nature chemical biology, n. 7, v.15 p. 737-746, 2019. DOI: https://doi.org/10.1038/s41589-019-0279-5

Downloads

Publicado

2023-07-26

Como Citar

Mendonça Morais, R., Roberta Pinheiro Pantoja, K., Gama Ortiz Menezes, E. ., Cristina Seabra Pires, F. ., Quaresma da Silva de Aguiar, I. ., Cristine Melo Aires, G., de Freitas Maués de Azevedo, F. ., & Nunes de Carvalho Junior, R. (2023). Tucumã of Pará oil: chemical profile, biological activities, and methods of extraction . Peer Review, 5(17), 369–392. https://doi.org/10.53660/820.prw2249

Edição

Seção

Articles