Uma revisão da literatura do metal duro WC-Co e o desenvolvimento de novos ligantes

Autores

DOI:

https://doi.org/10.53660/710.prw2211

Palavras-chave:

Metal duro, Processamento, Propriedades, Novos ligantes

Resumo

O metal duro, também conhecido como carbeto cimentado, é um material de grande relevância para o desenvolvimento industrial, pois é utilizado como ferramenta de corte para a usinagem de diversos componentes. Logo, devido a importância do metal duro, este trabalho busca apresentar os principais conceitos e pesquisas relacionados a temática dos carbetos cimentados, tais como: definição, formas de processamento, problemáticas, propriedades e desenvolvimento de novos ligantes através dos artigos encontrados na literatura.

Downloads

Não há dados estatísticos.

Referências

BETTERIDGE, W. The properties of metallic cobalt. Progress in Materials Science, v. 24, p. 51–142, jan. 1980.

CÂMARA, N. T. et al. Impact of the SiC addition on the morphological, structural and mechanical properties of Cu-SiC composite powders prepared by high energy milling. Advanced Powder Technology, v. 32, n. 8, p. 2950–2961, ago. 2021.

CHANG, S.-H.; CHANG, M.-H.; HUANG, K.-T. Study on the sintered characteristics and properties of nanostructured WC–15 wt% (Fe–Ni–Co) and WC–15 wt% Co hard metal alloys. Journal of Alloys and Compounds, v. 649, p. 89–95, nov. 2015.

CHENG, Q. et al. Comparative study of the microstructure and phase evolution of FeCoCrNiAl high-entropy alloy-matrix WC nanocomposite powders prepared by mechanical alloying. Journal of Alloys and Compounds, v. 938, p. 168518, mar. 2023.

COSTA, F. SÍNTESE E SINTERIZAÇÃO DE PÓS COMPÓSITOS DO SISTEMA W-Cu FRANCINÉ ALVES DA COSTA. Dissertação de doutorado em engenharia mecânica.São Paulo: IPEN, 2004.

CRAMER, C. L. et al. Reaction-bond composite synthesis of SiC-TiB2 by spark plasma sintering/field-assisted sintering technology (SPS/FAST). Journal of the European Ceramic Society, v. 40, n. 4, p. 988–995, abr. 2020a.

CRAMER, C. L. et al. In-situ metal binder-phase formation to make WC-FeNi Cermets with spark plasma sintering from WC, Fe, Ni, and carbon powders. International Journal of Refractory Metals and Hard Materials, v. 88, p. 105204, abr. 2020b.

DA SILVA, E. N. et al. Investigation of characteristics and properties of spark plasma sintered ultrafine WC-6.4Fe3.6Ni alloy as potential alternative WC-Co hard metals. International Journal of Refractory Metals and Hard Materials, v. 101, p. 105669, dez. 2021a.

DA SILVA, E. N. et al. Investigation of characteristics and properties of spark plasma sintered ultrafine WC-6.4Fe3.6Ni alloy as potential alternative WC-Co hard metals. International Journal of Refractory Metals and Hard Materials, v. 101, p. 105669, dez. 2021b.

DE MEDEIROS TAVARES, M. et al. Microstructure and properties of WC-11.5%Fe-4%NbH-0.5%C cemented carbides produced by spark plasma sintering. Materials Characterization, v. 187, p. 111838, maio 2022.

DONG, H. et al. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic. Journal of Materials Science and Technology, v. 97, p. 169–175, 2022.

DVORNIK, M.; MIKHAILENKO, E. The influence of the rotation frequency of a planetary ball mill on the limiting value of the specific surface area of the WC and Co nanopowders. Advanced Powder Technology, v. 31, n. 9, p. 3937–3946, set. 2020.

E.LASSNE; W.D.SCHUBERT. TUNGSTEN: properties, chemistry, technology of the element, alloys and chemical compounds. [s.l.] Kluwer Academic / Plenum Publishers, 1990.

EL-ESKANDARANY, M. S. Mechanical Alloying for Fabrication of Advanced. [s.l: s.n.].

ENAYATI, M. H.; ARYANPOUR, G. R.; EBNONNASIR, A. Production of nanostructured WC–Co powder by ball milling. International Journal of Refractory Metals and Hard Materials, v. 27, n. 1, p. 159–163, jan. 2009.

FANG, G. et al. Effect of grain size on oxidation resistance of WC-6wt%Co cemented carbide sintered by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, v. 111, p. 106108, fev. 2023.

FEDOROV, M. V. et al. Phase transitions during solid-phase sintering of WC-Co(8%). Procedia Structural Integrity, v. 40, p. 136–144, 2022.

FERNANDES, C. M.; PUGA, J.; SENOS, A. M. R. Nanometric WC-12 wt% AISI 304 powders obtained by high energy ball milling. Advanced Powder Technology, v. 30, n. 5, p. 1018–1024, maio 2019.

FERNANDES, C. M.; SENOS, A. M. R. Cemented carbide phase diagrams: A review. International Journal of Refractory Metals and Hard Materials, v. 29, n. 4, p. 405–418, jul. 2011.

GARCÍA, J. et al. Cemented carbide microstructures: a review. International Journal of Refractory Metals and Hard Materials, 2019.

GERMAN, R. M. Fundamentals of sintering. ASM International, Engineered Materials Handbook, v. 4, p. 260–269, 1991.

GERMAN, R. M. Powder Metallurgy Science (Second Edition). [s.l: s.n.].

GERMAN, R. M. Sintering theory and practice. [s.l: s.n.]. v. 1

GOMES, U. U. Tecnologia dos pós fundamentos e aplicações. Natal;UFRN, Editora Universitária: [s.n.].

GOMES, U. U. Tecnologia dos pós: fundamentos e aplicações. Natal-RN: Editora Universitária da UFRN, 1995.

HE, M. et al. Effect of cobalt content on the microstructure and mechanical properties of coarse grained WC-Co cemented carbides fabricated from chemically coated composite powder. Journal of Alloys and Compounds, v. 766, p. 556–563, out. 2018.

HU, Z.-Y. et al. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Materials & Design, v. 191, p. 108662, jun. 2020.

J. GARCÍA, W. S.; LACKNER, M. Chapter 9: Process Development and scale up of cemented carbide production in Scale-up in Metallurgy. Verlag ProcessEng Eng GmbH, p. 235–265, 2010.

KE, Z. et al. Microstructure and mechanical properties of dual-grain structured WC-Co cemented carbides. Ceramics International, v. 45, n. 17, p. 21528–21533, dez. 2019.

KOLASKA, H. Hartmetall - Gestern, Heute und Morgen. Metall, 2007.

LEE, J.-H. et al. Mechanical properties and microstructural evolution of WC-binderless and WC-Co hard materials by the heat treatment process. Journal of Alloys and Compounds, v. 786, p. 1–10, maio 2019.

LI, X. et al. Micro-mechanical properties of new alternative binders for cemented carbides: CoCrFeNiW high-entropy alloys. Journal of Alloys and Compounds, v. 820, p. 153141, abr. 2020.

LIMA, M. J. S. et al. Spark plasma sintering of nanostructured powder composites (WC–Ni) prepared by carboreduction reaction. Materials Chemistry and Physics, v. 254, p. 123439, nov. 2020.

LUO, W. et al. Corrosion resistance of WC-based cemented carbides with 10 wt% AlxCrCoCuFeNi high-entropy alloy binders. Intermetallics, v. 151, p. 107738, dez. 2022.

MAHMOODAN, M.; ALIAKBARZADEH, H.; GHOLAMIPOUR, R. Microstructural and mechanical characterization of high energy ball milled and sintered WC–10wt%Co–xTaC nano powders. International Journal of Refractory Metals and Hard Materials, v. 27, n. 4, p. 801–805, jul. 2009.

MÉGRET, A.; VITRY, V.; DELAUNOIS, F. High-energy ball milling of WC-10Co: Effect of the milling medium and speed on the mechanical properties. International Journal of Refractory Metals and Hard Materials, v. 104, p. 105774, abr. 2022.

MIN, F. et al. Preparation and properties of Ni-coated WC powder and highly impact resistant and corrosion resistant WC-Ni cemented carbides. Transactions of Nonferrous Metals Society of China, v. 32, n. 6, p. 1935–1947, jun. 2022.

MISSIAEN, J.-M.; ROURE, S. A general morphological approach of sintering kinetics: application to WC–Co solid phase sintering. Acta Materialia, v. 46, n. 11, p. 3985–3993, jul. 1998.

MUELLER-GRUNZ, A. et al. The manufacture and characterization of WC-(Al)CoCrCuFeNi cemented carbides with nominally high entropy alloy binders. International Journal of Refractory Metals and Hard Materials, v. 84, p. 105032, nov. 2019.

NORGREN, S. et al. Trends in the P/M hard metal industry. International Journal of Refractory Metals and Hard Materials, v. 48, p. 31–45, jan. 2015.

OLIVER, C. J. R. G.; ÁLVAREZ, E. A.; GARCÍA, J. L. Kinetics of densification and grain growth in ultrafine WC-Co composites. International Journal of Refractory Metals and Hard Materials, 2016.

O’QUIGLEY, D. G. F.; LUYCKX, S.; JAMES, M. N. New results on the relationship between hardness and fracture toughness of WC-Co hardmetal. Materials Science and Engineering: A, v. 209, n. 1–2, p. 228–230, maio 1996.

ORTNER, H. M.; ETTMAYER, P.; KOLASKA, H. The history of the technological progress of hardmetals. International Journal of Refractory Metals and Hard Materials, 2014.

PANOV, V. S. Nanostructured Sintered WC–Co Hard Metals (Review). Powder Metallurgy and Metal Ceramics, v. 53, n. 11–12, p. 643–654, 17 mar. 2015.

PARK, C.; KIM, J.; KANG, S. Effect of cobalt on the synthesis and sintering of WC-Co composite powders. Journal of Alloys and Compounds, v. 766, p. 564–571, out. 2018.

ROSA, J. M. B. et al. Study of characteristics and properties of spark plasma sintered WC with the use of alternative Fe-Ni-Nb binder as Co replacement. International Journal of Refractory Metals and Hard Materials, v. 92, p. 105316, nov. 2020.

SHICHALIN, O. O. et al. Comparative study of WC-based hard alloys fabrication via spark plasma sintering using Co, Fe, Ni, Cr, and Ti binders. International Journal of Refractory Metals and Hard Materials, v. 102, p. 105725, jan. 2022.

SORIA BIURRUN, T. et al. Effect of milling conditions and binder phase content on liquid phase sintering of heat treatable WC-Ni-Co-Cr-Al-Ti cemented carbides. International Journal of Refractory Metals and Hard Materials, v. 88, p. 105202, abr. 2020.

SUN, J.; ZHANG, F.; SHEN, J. Characterizations of ball-milled nanocrystalline WC–Co composite powders and subsequently rapid hot pressing sintered cermets. Materials Letters, v. 57, n. 21, p. 3140–3148, jul. 2003.

SURYANARAYANA, C. Mechanical alloying and milling. Progress in Materials Science, 2001.

WANG, B. et al. Effects of powder preparation and sintering temperature on consolidation of ultrafine WC-8Co tool material produced by spark plasma sintering. Ceramics International, v. 45, n. 16, p. 19737–19746, nov. 2019.

YANG, Q. et al. A novel route for the synthesis of ultrafine WC-15 wt %Co cemented carbides. Journal of Alloys and Compounds, v. 748, p. 577–582, jun. 2018.

YANG, Q. et al. Effect of carbon content on microstructure and mechanical properties of WC-10Co cemented carbides with plate-like WC grain. Ceramics International, v. 46, n. 2, p. 1824–1829, 2020.

YANG, X.-H. et al. Preparation of low binder WC-Co-Ni cemented carbides with fine WC grains and homogeneous distribution of Co/Ni. Materials Today Communications, v. 30, p. 103081, mar. 2022.

ZHANG, D. et al. Thermodynamic analysis of the interface reaction and thermal stress of WCp/Fe composites. Ceramics International, v. 46, n. 16, p. 26210–26215, nov. 2020.

ZHANG, Z. et al. The effect of volume fraction of WC particles on wear behavior of in-situ WC/Fe composites by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, v. 69, p. 196–208, dez. 2017.

Downloads

Publicado

2023-07-26

Como Citar

Lourenço, C. da S., & Gomes, U. U. (2023). Uma revisão da literatura do metal duro WC-Co e o desenvolvimento de novos ligantes. Peer Review, 5(17), 49–68. https://doi.org/10.53660/710.prw2211

Edição

Seção

Articles