Relação simbiótica de glomerosporos em gramíneas no Piauí
DOI:
https://doi.org/10.53660/341.prw814Palavras-chave:
Micorrízas arbusculares, Micro-organismo do solo, Fungo simbióticoResumo
O uso intensivo da terra tem efeitos negativos sobre a microbiota do solo e também sobre a produtividade agrícola. Os fungos micorrízicos arbusculares são micro-organismos do filo Glomeromycota, que atuam na absorção de água e nutrientes para as plantas. Através desta pesquisa, avaliamos a ecologia das espécies de FMAs na formação de gramíneas forrageiras utilizadas em terras cultiváveis do Piauí. Foram avaliadas dez áreas cultivadas diferentes tipos de gramíneas. Procedeu-se a extração dos glomerosporos presentes em amostras de solo, identificação das espécies de FMAs e colonização radicular. As espécies de FMA pertencentes ao Filo Glomeromycota, Classe Glomeromycetes recuperadas nos dez tratamentos foram organizados em 4 Ordens (Diversisporales, Gigasporales, Glomerales, Archaeosporales), 5 Famílias (Acaulosporaceae, Dentiscutataceae, Glomeraceae, Archeosporaceae, Ambisporaceae) e 5 gêneros: Acaulospora, Ambispora, Archaeospora, Dentiscutata, Glomus. Com os resultados sobre a identificação de micro-organismos edáficos específicos do Piaui, foi possível compreender a ecologia espécies indígenas de fungo micorrízicos arbusculares (FMAs) característicos do Estado piauiense.
Downloads
Referências
BASU, S.; RABARA, R. C.; NEGI, S. AMF: the future prospect for sustainable agriculture. Physiological and Molecular Plant Pathology, v. 102, p. 36-45, 2018.
BIZOS, G. et al. The role of microbial inoculants on plant protection, growth stimulation, and crop productivity of the olive tree (Olea europea L.). Plants, 9(6), 743, 2020.
DE SOUZA P. V. et al. Micorrizas Arbusculares como Indicador Biológico para Seleção de Modelos de Agroecossistemas Multifuncionais: 2. Frutícola. Revista Brasileira de Geografia Física, v. 14, n. 05, p. 3108-3124, 2021.
GERDEMANN, J.W., NICOLSON, T.H. Spores of mycorrhizal fungi isolated from soil by wet sieving and decanting. Transactions British Mycological Society, v. 46, p. 235–244, 1963.
GUADARRAMA, P.; ÁLVAREZ-SÂNCHEZ, F. J. 1999. Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8: 267-270.
HAO, L. et al. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La. Ecotoxicology and Environmental Safety, 212, 2021.
JENKINS, W.R. A rapid centrifugal-flotation technique for separating nema- todes from soil. Plant Dis. Rep., v. 48, p. 692, 1964.
JIANG, S. et al. Arbuscular mycorrhizal fungal communities in the rhizospheric soil of litchi and mango orchards as affected by geographic distance, soil properties and manure input. Applied Soil Ecology, 152, 103593, 2020.
JAYNE, B., & QUIGLEY, M. (2014). Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza, 24(2), 109-119.
LAURINDO, L.K., et al. Arbuscular mycorrhizal fungal community assembly in agroforestry systems from the Southern Brazil. Biologia 76, 1099–1107 (2021).
LEE, JI-EUN; LEE, EUN-HWA; EOM, AHN-HEUM. Effects of Arbuscular Mycorrhizal Fungal Inoculation on the Growth of Red Pepper and Soil Glomalin Content. The Korean Journal of Mycology, v. 49, n. 4, p. 517-524, 2021.
LIU, J. et al. Soil microbial community and network changes after long-term use of plastic mulch and nitrogen fertilization on semiarid farmland, Geoderma, Volume 396, 2021, 115086, ISSN 0016-7061
LIU, M. -Y. et al. Arbuscular mycorrhizal fungi inoculation impacts expression of aquaporins and salt overly sensitive genes and enhances tolerance of salt stress in tomato. Chemical and Biological Technologies in Agriculture, v. 10, n. 1, p. 5, 2023.
MORTON, J.B. Problems and solutions for the integration of Glomalean taxonomy, systematic biology, and the study of endomycorrhizal phenomena. Mycorrhiza, 2:97-109, 1993.
PALLA, M., et al. Native mycorrhizal communities of olive tree roots as affected by protective green cover and soil tillage. Applied Soil Ecology, 149, 103520, 2020.
PHILLIPS, J. M.; HAYMAN, D. S. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of British. Mycological Society, v. 55, p. 158-161, 1970.
SIQUEIRA, J.O.; COLOZZI-FILHO, A.; OLIVEIRA, E. Occurrence of vesicular-arbuscular mycorrhizae in agroecosytems and natural ecosystems of Minas Gerais State. Pesq. Agropec. Bras., 24:1499-1506, 1989.
STORCH, FELIX et al. Linking structure and species richness to support forest biodiversity monitoring at large scales. Annals of Forest Science, v. 80, n. 1, p. 1-17, 2023.
WIJAYAWARDENE, Nalin N. et al. Outline of Fungi and fungus-like taxa. Mycosphere Online: Journal of Fungal Biology, v. 11, n. 1, p. 1060-1456, 2020.
WIJAYAWARDENE, Nalin N. et al. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Diversity, v. 92, n. 1, p. 43-129, 2018.
ZHANG, Shujuan et al. Arbuscular mycorrhizal fungi increase grain yields: A meta‐analysis. New Phytologist, v. 222, n. 1, p. 543-555, 2019.