Obtenção de micro e nanocelulose a partir de biomassa lignocelulósica de resíduo do ingá-cipó (Inga edulis Mart.) via tratamento químico

Autores

DOI:

https://doi.org/10.53660/291.prw603

Palavras-chave:

Tratamento alcalino, Hidrólise ácida, MET, FTIR

Resumo

A busca por novos materiais sustentáveis ocasiona um aumento gradativo de estudos direcionados à utilização de matéria-prima renovável, visando gerar produtos não agressivos ao meio ambiente, mantendo sua qualidade e desempenho. Os frutos do ingá-cipó geram resíduos que são ótimas fontes de biomassa lignocelulósica. Nesse sentido, o objetivo deste trabalho foi obter micro e nanocelulose cristalina a partir da biomassa lignocelulosica da casca do fruto do ingá-cipó via tratamento químico, assim como realizar sua caracterização físico-química e morfológica. As cascas foram submetidas a uma extração sequencial de hemicelulose e lignina, seguindo da síntese de micro e nanocelulose por hidrólise ácida. O material obtido foi caracterização através de infravermelho com transformada de Fourier (FTIR) e microscopia eletrônica de transmissão (MET). Através das análises de FTIR foi possível constatar a presença dos grupos funcionais típicos de celulose. As imagens provenientes do MET, auxiliaram a visualização de micro e nanocelulose cristalina, que poderão ser utilizadas na geração de novos materiais com melhor valor agregado.

Downloads

Não há dados estatísticos.

Referências

AKATAN, K.; KABDRAKHMANOVA, S.; KUANYSHBEKOV, T.; IBRAEVA, Z.; BATTALOVA, A.; JOSHY, K. S.; THOMAS, S. Highly-efficient isolation of microcrystalline cellulose and nanocellulose from sunflower seed waste via environmentally benign method. Cellulose, v. 29, n. 7, p. 3787 – 3802, 2022. https://doi.org/10.1007/s10570-022-04527-4

BHAT, A. H.; KHAN, I.; USMANI, M. A.; UMAPATHI, R.; AL-KINDY, S. M. Z. Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose. International Journal of Biological Macromolecules, v. 129, p. 750 – 777, 2019. https://doi.org/10.1016/j.ijbiomac.2018.12.190

BIMESTRE, T. A.; JÚNIOR, J. A. M.; CANETTIERI, E. V.; TUNA, C. E. Hydrodynamic cavitation for lignocellulosic biomass pretreatment: a review of recent developments and future perspectives. Bioresources and Bioprocessing, v. 9, n. 1, 2022. https://doi.org/10.1186/s40643-022-00499-2

BISWAL, A. K.; HENGGE, N. N.; BLACK, I. M.; ATMODJO, M. A.; MOHANTY, S. S.; RYNO, D.; HIMMEL, M. E.; AZADI, P.; BOMBLE, Y. J.; MOHNEN, D. Composition and yield of non-cellulosic and cellulosic sugars in soluble and particulate fractions during consolidated bioprocessing of poplar biomass by Clostridium thermocellum. Biotechnology for Biofuels and Bioproducts, v. 15, n. 1, 2022. https://doi.org/10.1186/s13068-022-02119-9

BONGAO, H. C.; GABATINO, R. R. A.; ARIAS, C. F. H.; MAGDALUYO, E. R. Micro/nanocellulose from waste Pili (Canarium ovatum) pulp as a potential anti-ageing ingredient for cosmetic formulations. Materials Today: Proceedings, v. 22, p. 275 – 280, 2020. https://doi.org/10.1016/j.matpr.2019.08.117

BRASIL. Ministério do Meio Ambiente. Amazônia, 2021. Disponível em: https://www.gov.br/mma/pt-br/assuntos/ecossistemas-1/biomas/amazonia#:~:text=O%20bioma%20amaz%C3%B4nico%20abrange%20mais,maior%20diversidade%20biol%C3%B3gica%20do%20mundo.%20Acesso%20em:%2030%20de%20out.%202022. Acessado em 30 de out 2022.

CHEN, X.; HE, D.; HOU, T.; LU, M.; MOSIER, N. S.; HAN, L.; XIAO, W. Structure–property–degradability relationships of varisized lignocellulosic biomass induced by ball milling on enzymatic hydrolysis and alcoholysis. Biotechnology for Biofuels and Bioproducts, v. 15, n. 1, 2022. https://doi.org/10.1186/s13068-022-02133-x

CHENG, M.; QIN, Z.; HU, J.; LIU, Q.; WEI, T.; LI, W.; LING, Y.; LIU, B. Facile and rapid one–step extraction of carboxylated cellulose nanocrystals by H2SO4/HNO3 mixed acid hydrolysis. Carbohydrate Polymers, v. 231, 2020. https://doi.org/10.1016/j.carbpol.2019.115701

CHU, Y.; SUN, Y.; WU, W.; XIAO, H. Dispersion Properties of Nanocellulose: A Review. Carbohydrate Polymers, v. 250, p. 1 – 17, 2020. https://doi.org/10.1016/j.carbpol.2020.116892

COLTURATO, P. L.; GOVEIA, D. Controlled release of vitamin D3 using a nanocellulose-based membrane. Scientific Reports, v. 12, n. 1, 2022. https://doi.org/10.1038/s41598-022-16179-2

CURMI, H.; CHIRAT, C.; ROUBAUD, A.; PEYROT, M.; HAARLEMMER, G.; LACHENAL, D. Extraction of phenolic compounds from sulfur-free black liquor thanks to hydrothermal treatment before the production of syngas for biofuels. Journal of Supercritical Fluids, v. 181, 2022. https://doi.org/10.1016/j.supflu.2021.105489

DONGRE, M.; SURYAWANSHI, V. B. Analysis of cellulose-based nanocomposites & amp; potential applications. Materials Today: Proceedings, v. 45, p. 3476 – 3482, 2021. https://doi.org/10.1016/j.matpr.2020.12.943

DU, Z.; LI, F.; LIU, Z.; TAN, Y.; NIU, K.; FANG, X. Driving an in vitro multienzymatic cascade of laminaribiose biosynthesis from non-food cellulose with balancing the precursor supply. Industrial Crops and Products, v. 182, 2022. https://doi.org/10.1016/j.indcrop.2022.114878

FALCÃO, M. A.; CLEMENT, C. R. Fenologia e produtividade do Infá-Cipó (Inga edulis) na Amazônia Central. Acta Amazonica, v. 30, n. 2, p. 173–180, 2000. https://doi.org/10.1590/1809-43922000302180

FERNÁNDEZ-RODRÍGUEZ, J.; ERDOCIA, X.; SÁNCHEZ, C.; GONZÁLEZ ALRIOLS, M.; LABIDI, J. Lignin depolymerization for phenolic monomers production by sustainable processes. Journal of Energy Chemistry, v. 26, n. 4, p. 622 – 631, 2017. https://doi.org/10.1016/j.jechem.2017.02.007

FREITAS, F. A.; ARAÚJO, R. C.; SOARES, E. R.; NUNOMURA, R. C. S.; SILVA, F. M. A.; SILVA, S. R. S.; SOUZA, A. Q. L.; SOUZA, A. D. L.; FRANCO-MONTALBÁN, F.; ACHO, L. D. R.; LIMA, E. S.; BATAGLION, G. A.; KOOLEN, H. H. F. Biological evaluation and quantitative analysis of antioxidant compounds in pulps of the Amazonian fruits bacuri (Platonia insignis Mart.), ingá (Inga edulis Mart.), and uchi (Sacoglottis uchi Huber) by UHPLC-ESI-MS/MS. Journal of Food Biochemistry, v. 42, n. 1, 2018. https://doi.org/10.1111/jfbc.12455

HAQ, I.; QAISAR, K.; NAWAZ, A.; AKRAM, F.; MUKHTAR, H.; ZOHU, X.; XU, Y.; MUMTAZ, M.; RASHID, U.; GHANI, W.; CHOONG, T. Advances in Valorization of Lignocellulosic Biomass towards Energy Generation. Catalysts, v. 11, n. 3, p. 309, 2021. https://doi.org/10.3390/catal11030309

ILYAS, R.; SAPUAN, S.; ATIKAH, M.; ASYRAF, M.; RAFIQAH, S. A.; AISYAH, H.; NURAZZI, N. M.; NORRRAHIM, M. Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr). Textile Research Journal. v. 91, p. 152 – 167, 2020. https://doi.org/10.1177/0040517520932393

JI, H.; WANG, L.; TAO, F.; YAO, Z.; LI, X.; DONG, C.; PANG, Z. A Hydrotrope Pretreatment for Stabilized Lignin Extraction and High Titer Ethanol Production. Bioresoures and Bioprocessing, v. 9, n. 40. 2022. https://doi.org/10.21203/rs.3.rs-1205162/v1

KHAN, A.; JAWAID, M.; KIAN, L. K.; KHAN, A. A. P.; ASIRI, A. M. Isolation and Production of Nanocrystalline Cellulose from Conocarpus Fiber. Polymers, v. 13, n. 11, 2021. https://doi.org/10.3390/polym13111835

KOUADRI, I.; SATHA, H. Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds. Industrial Crops and Products, v. 124, p. 787–796, 2018. https://doi.org/10.1016/j.indcrop.2018.08.051

LI, B.; LIU, N.; ZHAO, X. Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. Biotechnology for Biofuels and Bioproducts, v. 15, n. 1, 2022. https://doi.org/10.1186/s13068-022-02127-9

LIU, X.; LU, J.; FU, M.; ZHENG, H.; CHEN, Q. Activated carbon induced hydrothermal carbonization for the treatment of cotton pulp black liquor. Journal of Water Process Engineering, v. 47, 2022. https://doi.org/10.1016/j.jwpe.2022.102733

LIU, Y.; LI, S.; WANG, Z.; WANG, L. Ultrasound in cellulose-based hydrogel for biomedical use: From extraction to preparation. Colloids and Surfaces B: Biointerfaces, v. 212, 2022. https://doi.org/10.1016/j.colsurfb.2022.112368

LUKAJTIS, R.; RYBARCZYK, P.; KUCHARSKA, K.; KONOPACKA-ŁYSKAWA, D.; SŁUPEK, E.; WYCHODNIK, K.; KAMIŃSKI, M. Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis. Energies, v. 11, n. 4, 2018. https://doi.org/10.3390/en11040886

MAHMUD, N.; ROSENTRATER, K. A. Life-Cycle Assessment (LCA) of Different Pretreatment and Product Separation Technologies for Butanol Bioprocessing from Oil Palm Frond. Energies, v. 13, n. 1, 2019. https://doi.org/10.3390/en13010155

MIYASHIRO, D.; HAMANO, R.; UMEMURA, K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials, v. 10, n. 2, 2020. https://doi.org/10.3390/nano10020186

MOKHENA, T. C.; JOHN, M. J. Cellulose nanomaterials: new generation materials for solving global issues. Cellulose, v. 27, n 3, p. 1149 – 1194, 2020. https://doi.org/10.1007/s10570-019-02889-w

MORYA, R.; KUMAR, M.; TYAGI, I.; KUMAR PANDEY, A.; PARK, J.; RAJ, T.; SIROHI, R.; KUMAR, V.; KIM, S. H. Recent advances in black liquor valorization. Bioresource Technology, v. 350, 2022. https://doi.org/10.1016/j.biortech.2022.126916

NAIR, A. R.; SAMBHUDEVAN, S.; SHANKAR, B. Synthesis, characterization and dye removal properties of cellulose nanocrystals embedded natural rubber latex composite. Cellulose Chemistry and Technology, v. 53, p. 263 – 270, 2019. https://doi.org/10.35812/cellulosechemtechnol.2019.53.26

NAZ, S.; ALI, J. S.; ZIA, M. Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims. Bio-Design and Manufacturing, v. 2, n. 3, p. 187 – 212, 2019. https://doi.org/10.1007/s42242-019-00049-4

ROSA, R.; ROSACE, G.; ARRIGO, R.; MALUCELLI, G. Preparation and characterization of 3D-Printed Biobased Composites Containing Micro- or Nanocrystalline Cellulose. Polymers, v. 14, n. 9, 2022. https://doi.org/10.3390/polym14091886

PIREDA, S; MIGUEL, E. C. M.; XAVIER, V; CUNHA, M. Morpho-anatomical and ultrastructural analysis of extrafloral nectaries in Inga edulis (Vell.) Mart. (Leguminosae). Nordic Journal of Botany, v. 36, n. 7, 2018. https://doi.org/10.1111/njb.01665

PIRES, J. R. A.; SOUZA, V. G. L.; GOMES, L. A.; COELHOSO, I. M.; GODINHO, M. H.; FERNANDO, A. L. Micro and nanocellulose extracted from energy crops as reinforcement agents in chitosan films. Industrial Crops and Products, v. 186, 2022. https://doi.org/10.1016/j.indcrop.2022.115247

PRADHAN, D.; JAISWAL, A. K.; JAISWAL, S. Emerging technologies for the production of nanocellulose from lignocellulosic biomass. Carbohydrate Polymers, v. 285, 2022. https://doi.org/10.1016/j.carbpol.2022.119258

PRAJAPATI, B. P.; KANGO, N. Evaluation of alkali black liquor recycling for rice straw delignification and its effect on enzymatic saccharification. Industrial Crops and Products, v. 180, 2022. https://doi.org/10.1016/j.indcrop.2022.114709

RAHMANI, A.; GAHLOT, P.; MOUSTAKAS, K.; KAZMI, A. A; SHEKHAR, C.; TYAGI, V. K. (2022). Pretreatment methods to enhance solubilization and anaerobic biodegradability of lignocellulosic biomass (wheat straw): Progress and challenges. Fuel, v. 319, 2022. https://doi.org/10.1016/j.fuel.2022.123726

RASHID, S; SHAHI, A. K.; DUTTA, H. Extraction and Characterization of Cellulose and Cellulose Nanowhiskers from Almond Shell Biomass, Metal Removal, and Toxicity Analysis. Biointerface Research in Applied Chemistry, v. 12, n. 2, p. 1705 –1720, 2022. https://doi.org/10.33263/briac122.17051720

SAINORUDIN, M. H.; ABDULLAH, N. A.; RANI, M. S. A.; MOHAMMAD, M.; KADIR, N. H.; RAZALI, H.; ASIM, N.; YAAKOB, Z. Investigation of the Structural, Thermal and Morphological Properties of Nanocellulose Synthesised from Pineapple Leaves and Sugarcane Bagasse. Current Nanoscience, v. 18, n. 1, p. 68 – 77, 2022. https://doi.org/10.2174/1573413717666210216115609

SALAS, C.; NYPELÖ, T.; RODRIGUEZ-ABREU, C.; CARRILLO, C.; ROJAS, O. J. Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid & Interface Science, v. 19, n. 5, p. 383 – 396. 2014. https://doi.org/10.1016/j.cocis.2014.10.003

SQUINCA, P.; BILATTO, S.; BADINO, A. C.; FARINAS, C. S. Nanocellulose Production in Future Biorefineries: An Integrated Approach Using Tailor-Made Enzymes. ACS Sustainable Chemistry & Engineering, v. 8, n. 5, p. 2277 – 2286, 2020. https://doi.org/10.1021/acssuschemeng.9b06790

STANLEY, J.; THANARASU, A.; KUMAR, P.; PERIYASAMY, K.; RAGHUNANDHAKUMAR, S.; PERIYARAMAN, P.; DEVARAJ, K.; DHANASEKARAN, A.; SUBRAMANIAN, S. Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion - A review. Fuel, v. 318, 2022. https://doi.org/10.1016/j.fuel.2022.123593

TANG, Q.; QIAN, Y.; YANG, D.; QIU, X.; QIN, Y.; ZHOU, M. Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers, v. 12, n. 11, 2020. https://doi.org/10.3390/polym12112471

WANG, F.; OUYANG, D.; ZHOU, Z.; PAGE, S. J.; LIU, D.; ZHAO, X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry, v. 57, p. 247 – 280, 2021. https://doi.org/10.1016/j.jechem.2020.08.060

WANG, L.; ZHU, X.; CHEN, X.; ZHANG, Y.; YANG, H.; LI, Q.; JIANG, J. Isolation and characteristics of nanocellulose from hardwood pulp via phytic acid pretreatment. Industrial Crops and Products, v. 182, 2022. https://doi.org/10.1016/j.indcrop.2022.114921

WANG, Y.; GAN, R.; ZHAO, S.; MA, W.; ZHANG, X.; SONG, Y.; MA, C.; SHI, J. B, N, F tri-doped lignin-derived carbon nanofibers as an efficient metal-free bifunctional electrocatalyst for ORR and OER in rechargeable liquid/solid-state Zn-air batteries. Applied Surface Science, v. 598, 2022. https://doi.org/10.1016/j.apsusc.2022.153891

WU, J. H.; HE, C. Y. Advances in Cellulose-Based Sorbents for Extraction of Pollutants in Environmental Samples. Chromatographia, v. 82, n. 8, p. 1151 –1169, 2019. https://doi.org/10.1007/s10337-019-03708-x

YI, Y.; WANG, X.; LIU, Z.; GAO, C.; FATEHI, P.; WANG, S.; KONG, F. A green composite hydrogel based on xylan and lignin with adjustable mechanical properties, high swelling, excellent UV shielding, and antioxidation properties. Journal of Applied Polymer Science, v. 139, n. 28, 2022. https://doi.org/10.1002/app.52520

Publicado

2023-04-08

Como Citar

Gomes, T. L., Souza, M. C. de, Nascimento, I. C. do ., Araújo, L. C. A. de ., & Costa, L. P. da. (2023). Obtenção de micro e nanocelulose a partir de biomassa lignocelulósica de resíduo do ingá-cipó (Inga edulis Mart.) via tratamento químico. Peer Review, 5(5), 88–103. https://doi.org/10.53660/291.prw603

Edição

Seção

Articles