Algoritmos de navegação de robôs móveis com tração nas quatro rodas utilizando sistemas de localização absolutos GNSS e RTK

Autores

  • Pablo France Salarolli
  • Leonardo Gonçalves Baptista
  • Caio Lopes Oliveira
  • Carlos Torturella Valadão
  • Daniel Fernando Tello Gamarra
  • Rogério Passos do Amaral Pereira
  • Gustavo Maia de Almeida
  • Marco Antonio de Souza Leite Cuadros

DOI:

https://doi.org/10.53660/255.prw414b

Palavras-chave:

Geolocalização, Robôs Móveis, GNSS, GPS, ROS

Resumo

A robótica móvel é uma área em grande crescimento na pesquisa científica e na indústria, devido a sua versatilidade e capacidade de substituir os humanos, especialmente em trabalhos perigosos, e por apresentar melhor desempenho em certas aplicações. Várias delas são em ambientes externos, como em indústrias, aplicações aeroespaciais, petroquímicas, dentre outras. Esse artigo mostra a implementação de um sistema de localização de um robô móvel em ambiente outdoor, utilizando sistema de navegação global por satélite e odometria. Pretende-se, assim, obter uma forma robusta de localização, permitindo uma navegação confiável em diferentes terrenos. Testes foram realizados com a navegação por satélite e a odometria. Percebeu-se que o robô pôde trabalhar bem em ambientes externos capturando corretamente a localização GPS quando comparado com o Google Earth Pro. Com relação a odometria, houve pequenos erros quando o robô se moveu em linha reta, o que aumentou ao se realizar rotações. Isso se deve à característica do funcionamento do robô diferencial 4WD, onde as curvas geram deslizamento das rodas. Além disso, pode‑se demonstrar o bom funcionamento quando feita a fusão dos dados de GNSS, IMU e odometria.

Downloads

Não há dados estatísticos.

Referências

AL KHATIB, Ehab I.; JARADAT, Mohammad Abdel Kareem; ABDEL-HAFEZ, Mamoun F. Low-cost reduced navigation system for mobile robot in indoor/outdoor environments. IEEE Access, [S. l.], v. 8, p. 25014–25026, 2020.

ALATISE, Mary B.; HANCKE, Gerhard P. A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods. IEEE Access, [S. l.], v. 8, p. 39830–39846, 2020. DOI: 10.1109/ACCESS.2020.2975643.

BORENSTEIN, J.; EVERETT, H. R.; FENG, L.; WEHE, D. Mobile Robot Positioning: Sensors and Techniques. Journal of Robotic Systems, 1997. Disponível em: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/34938/2_ftp.pdf.

BRAÑA, Francisco-Javier. A fourth industrial revolution? Digital transformation, labor and work organization: a view from Spain. Journal of Industrial and Business Economics, [S. l.], v. 46, n. 3, p. 415–430, 2019.

BURGARD, Wolfram; CREMERS, Armin B.; FOX, Dieter; HÄHNEL, Dirk; LAKEMEYER, Gerhard; SCHULZ, Dirk; STEINER, Walter; THRUN, Sebastian. Experiences with an interactive museum tour-guide robot. Artificial intelligence, [S. l.], v. 114, n. 1–2, p. 3–55, 1999.

CHONG, Kok Seng; KLEEMAN, L. Accurate odometry and error modelling for a mobile robot. In: PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 1997, Anais [...]. : IEEE, 1997. p. 2783–2788. DOI: 10.1109/ROBOT.1997.606708. Disponível em: http://ieeexplore.ieee.org/document/606708/.

COLLEDANCHISE, Michele; ÖGREN, Petter. Behavior Trees in Robotics and AI. [s.l.] : CRC Press, 2018. DOI: 10.1201/9780429489105. Disponível em: https://www.taylorfrancis.com/books/9780429950902.

CONNER, David C.; WILLIS, Justin. Flexible Navigation: Finite state machine-based integrated navigation and control for ROS enabled robots. In: SOUTHEASTCON 2017 2017, Anais [...]. [s.l: s.n.] p. 1–8.

CURTO, Belén; MORENO, Vidal. Robotics in education. Journal of Intelligent & Robotic Systems, [S. l.], v. 81, n. 1, p. 3, 2016.

DE SOUSA PISSARDINI, Rodrigo; DE OLIVEIRA, Rafael Henrique; VAZ, Jhonnes Alberto; DE ALMEIDA FILHO, Flávio Guilherme Vaz; DA

FONSECA JUNIOR, Edvaldo Simões. O problema do posicionamento para transporte terrestre no ambiente urbano. Revista Brasileira de Geomática, [S. l.], v. 5, n. 3, p. 380–403, 2017.

EUROFUND. Game changing technologies: Exploring the impact on production processes and work. [S. l.], 2018.

FOOTE, Tully. tf: The transform library. In: 2013 IEEE CONFERENCE ON TECHNOLOGIES FOR PRACTICAL ROBOT APPLICATIONS (TEPRA) 2013, Anais [...]. [s.l: s.n.] p. 1–6.

FOUNTAS, Spyros; MYLONAS, Nikos; MALOUNAS, Ioannis; RODIAS, Efthymios; HELLMANN SANTOS, Christoph; PEKKERIET, Erik. Agricultural robotics for field operations. Sensors, [S. l.], v. 20, n. 9, p. 2672, 2020.

FOX, Dieter; BURGARD, Wolfram; THRUN, Sebastian. The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, [S. l.], v. 4, n. 1, p. 23–33, 1997.

GAIN. ROS 2 in the development of an autonomous robot application. 2022. Disponível em: https://www.youtube.com/watch?v=AUlz58yum58. Acesso em: 1 jan. 2023.

GAO, Xinyu; LI, Jinhai; FAN, Lifeng; ZHOU, Qiao; YIN, Kaimin; WANG, Jianxu; SONG, Chao; HUANG, Lan; WANG, Zhongyi. Review of wheeled mobile robots’ navigation problems and application prospects in agriculture. Ieee Access, [S. l.], v. 6, p. 49248–49268, 2018.

GARCIA, Elena; JIMENEZ, Maria Antonia; DE SANTOS, Pablo Gonzalez; ARMADA, Manuel. The evolution of robotics research. IEEE Robotics & Automation Magazine, [S. l.], v. 14, n. 1, p. 90–103, 2007.

GARCIA, M. A. Porta; MONTIEL, Oscar; CASTILLO, Oscar; SEPULVEDA, Roberto; MELIN, Patricia. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Applied Soft Computing, [S. l.], v. 9, n. 3, p. 1102–1110, 2009.

GOEL, Puneet; ROUMELIOTIS, Stergios I.; SUKHATME, Gaurav S. Robust localization using relative and absolute position estimates. In: PROCEEDINGS 1999 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. HUMAN AND ENVIRONMENT FRIENDLY ROBOTS WITH HIGH INTELLIGENCE AND EMOTIONAL QUOTIENTS (CAT. NO. 99CH36289) 1999, Anais [...]. [s.l: s.n.] p. 1134–1140.

IBGE. GNSS. 2018. Disponível em: https://atlasescolar.ibge.gov.br/conceitos-gerais/o-que-e-cartografia/sistema-global-de-navegac-a-o-por-sate-litess.html. Acesso em: 20 fev. 2022.

KAGERMANN, Henning; WAHLSTER, Wolfgang; HELBIG, Johannes. Securing the future of German manufacturing industry. Recommendations for implementing the strategic initiative INDUSTRIE, [S. l.], v. 4, n. 199, p. 14, 2013.

KAPLAN, Elliott; HEGARTY, Christopher. Understanding GPS. 2. ed. Norwood, MA: Artech House, 2005.

LU, David V; HERSHBERGER, Dave; SMART, William D. Layered costmaps for context-sensitive navigation. In: 2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2014, Anais [...]. [s.l: s.n.] p. 709–715.

LU, Yu-Hsiang; JUANG, Jih-Gau. Application of differential global positioning system and path planning to robot outdoor patrol. Sensors and Materials, [S. l.], v. 30, n. 8, p. 1643–1654, 2018.

MACENSKI, Steve; MART’IN, Francisco; WHITE, Ruffin; CLAVERO, Jonatan Ginés. The marathon 2: A navigation system. In: 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) 2020, Anais [...]. [s.l: s.n.] p. 2718–2725.

MACENSKI, Steve; TSAI, David; FEINBERG, Max. Spatio-temporal voxel layer: A view on robot perception for the dynamic world. International Journal of Advanced Robotic Systems, [S. l.], v. 17, n. 2, p. 1729881420910530, 2020.

MARDER-EPPSTEIN, Eitan; BERGER, Eric; FOOTE, Tully; GERKEY, Brian; KONOLIGE, Kurt. The office marathon: Robust navigation in an indoor office environment. In: 2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2010, Anais [...]. [s.l: s.n.] p. 300–307.

MATHEW, Robins; HIREMATH, Somashekhar S. Reinforcement learning based approach for mobile robot navigation. In: 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE) 2019, Anais [...]. [s.l: s.n.] p. 523–526.

MEEUSSEN, Wim et al. Autonomous door opening and plugging in with a personal robot. In: 2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2010, Anais [...]. [s.l: s.n.] p. 729–736.

MOORE, David C.; HUANG, Albert S.; WALTER, Matthew; OLSON, Edwin; FLETCHER, Luke; LEONARD, John; TELLER, Seth. Simultaneous local and global state estimation for robotic navigation. In: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2009, Anais [...]. [s.l: s.n.] p. 3794–3799.

NEMEC, Dušan; ŠIMÁK, Vojtech; JANOTA, Aleš; HRUBOŠ, Marián; BUBEN’IKOVÁ, Em’ilia. Precise localization of the mobile wheeled robot using sensor fusion of odometry, visual artificial landmarks and inertial sensors. Robotics and Autonomous Systems, [S. l.], v. 112, p. 168–177, 2019.

NOVATEL. An Introduction to GNSS. 2. ed. [s.l.] : NovAtel Inc, 2015.

PARK, Dong Il; PARK, Chanhun; DO, Hyunmin; CHOI, Taeyong; KYUNG, Jinho. Development of dual arm robot platform for automatic assembly. In: 2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014) 2014, Anais [...]. [s.l: s.n.] p. 319–321.

PERMINOV, Stepan; MIKHAILOVSKIY, Nikita; SEDUNIN, Alexander; OKUNEVICH, Iaroslav; KALINOV, Ivan; KURENKOV, Mikhail; TSETSERUKOU, Dzmitry. Ultrabot: Autonomous mobile robot for indoor uv-c disinfection. In: 2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE) 2021, Anais [...]. [s.l: s.n.] p. 2147–2152.

RÖSMANN, Christoph; HOFFMANN, Frank; BERTRAM, Torsten. Timed-elastic-bands for time-optimal point-to-point nonlinear model predictive control. In: 2015 EUROPEAN CONTROL CONFERENCE (ECC) 2015, Anais [...]. [s.l: s.n.] p. 3352–3357.

RUAN, Kaicheng; WU, Zehao; XU, Qingsong. Smart cleaner: A new autonomous indoor disinfection robot for combating the covid-19 pandemic. Robotics, [S. l.], v. 10, n. 3, p. 87, 2021.

RUBIO, Francisco; VALERO, Francisco; LLOPIS-ALBERT, Carlos. A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, [S. l.], v. 16, n. 2, p. 1729881419839596, 2019.

RUNCIMAN, Mark; DARZI, Ara; MYLONAS, George P. Soft robotics in minimally invasive surgery. Soft robotics, [S. l.], v. 6, n. 4, p. 423–443, 2019.

SIEGWART, Roland; NOURBAKHSH, Illah Reza; SCARAMUZZA, Davide. Introduction to autonomous mobile robots. [s.l.] : MIT press, 2011.

THRUN, Sebastian; FOX, Dieter; BURGARD, Wolfram; DELLAERT, Frank. Robust Monte Carlo localization for mobile robots. Artificial Intelligence, [S. l.], v. 128, n. 1–2, p. 99–141, 2001. DOI: 10.1016/S0004-3702(01)00069-8. Disponível em: http://www.sciencedirect.com/science/article/pii/S0004370201000698.

VEGA, Jesús Elias Miranda; CHAIDEZ, Anastacio González; GARC’IA, Cuauhtémoc Mariscal; LÓPEZ, Moisés Rivas; FUENTES, Wendy Flores; SERGIYENKO, Oleg. Recognition system by using machine vision tools and machine learning techniques for mobile robots. In: Examining Optoelectronics in Machine Vision and Applications in Industry 4.0. [s.l.] : IGI Global, 2021. p. 258–287.

VOUGIOUKAS, S. Annual review of control, robotics, and autonomous systems. Agricultural robotics, [S. l.], v. 2, n. 1, p. 365–392, 2019.

ZHANG, Chao; ZHAN, Quanzhong; WANG, Qi; WU, Haichao; HE, Ting; AN, Yi. Autonomous dam surveillance robot system based on multi-sensor fusion. Sensors, [S. l.], v. 20, n. 4, p. 1097, 2020.

Downloads

Publicado

2023-04-08

Como Citar

Salarolli, P. F., Baptista, L. G., Oliveira, C. L., Valadão, C. T., Gamarra, D. F. T., Pereira, R. P. do A., Almeida, G. M. de, & Cuadros, M. A. de S. L. (2023). Algoritmos de navegação de robôs móveis com tração nas quatro rodas utilizando sistemas de localização absolutos GNSS e RTK. Peer Review, 5(5), 209–238. https://doi.org/10.53660/255.prw414b

Edição

Seção

Artigos