Análise morfológica e elementar da superfície de uma vitrocerâmica implantada em calvária de rato utilizando MEV e EDX

Autores

  • Mauricio Mitsuo Monção Instituto Federal de Educação, Ciência e Tecnologia da Bahia https://orcid.org/0000-0003-0183-1992
  • Carina Soares do Nascimento Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA
  • Isabela Cerqueira Barreto Universidade Federal da Bahia
  • Roberto Paulo Correia de Araújo Universidade Federal da Bahia

DOI:

https://doi.org/10.53660/PRW-2541-4557

Palavras-chave:

Vitrocerâmica, Microscopia eletrônica de varredura, Espectroscopia de raios X

Resumo

O objetivo deste estudo foi analisar a morfologia da superfície e a composição elementar de uma vitrocerâmica desenvolvida com diferentes proporções de wollastonita (W) e fosfato tricálcico (TCP) implantada em calvária de rato. A vitrocerâmica foi preparada com mistura de pós de W e TCP em proporções (W%/TCP%) iguais a 20/80%, 60/40% e 80/20%, seguida de sinterização e processamento para obtenção de grânulos com tamanhos entre 400 e 600 μm, que foram implantados em calvária de rato, e analisado nos pontos biológicos de 7, 15 e 45 dias após a implantação. Para análise morfológica, as amostras foram micrografadas em microscópio eletrônico de varredura (MEV) e analisadas no software ImageJ. A análise elementar foi realizada utilizando espectroscopia de energia dispersiva de raios X (EDX). Os resultados demonstraram que as diferentes proporções de W e TCP promoveram diferentes modificações na microestrutura da vitrocerâmica remanescente ao longo dos pontos biológicos, além de apresentarem diferentes concentrações de O, Si, Ca e P. Conclui-se que as diferentes proporções de W e TCP conferiram à vitrocerâmica diferentes comportamentos de biodegradabilidade após implantação em sitio ósseo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Mauricio Mitsuo Monção, Instituto Federal de Educação, Ciência e Tecnologia da Bahia

Possui graduação em Tecnologia em Radiologia (UNIC, 2007), Especialização em Imagenologia médica (UNINOVE, 2009), Mestrado em Ciências da Saúde (UNICSUL, 2010) e Doutorado em Processos Interativos de Órgãos e Sistemas (UFBA, 2021). Atualmente é professor efetivo do Instituto Federal de Educação, Ciência e Tecnologia da Bahia (IFBA) do Departamento de Tecnologia em Saúde e Biologia - DTSBio, onde desenvolve ensino, pesquisa e extensão na área das técnicas radiológicas. 

Referências

AYKORA, D.; UZUN, M. Bone tissue engineering for osteointegration: Where are we now?. Polymer Bulletin, v. 81, n. 10, p. 1-11, 2024. https://doi.org/10.1007/s00289-024-05153-9.

BARBOSA, W.T., et al. Synthesis and in vivo evaluation of a scaffold containing wollastonite/β-TCP for bone repair in a rabbit tibial defect model. Journal of biomedical materials research. Part B, Applied biomaterials, v.108, n. 3, p. 1107–1116, 2020. https://doi.org/10.1002/jbm.b.34462

DINGLINGGE, C.; JIANDONG, D. Recent advances in regenerative biomaterials. Regenerative Biomaterials, v. 9, rbac098, 2022. https://doi.org/10.1093/rb/rbac098

FERRARIS, S., et al. The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces. Materials Science and Engineering: C, v. 116, 111238, 2020. https://doi.org/10.1016/j.msec.2020.111238.

GIRÓN, J., et al. Biomaterials for bone regeneration: an orthopedic and dentistry overview. Brazilian journal of medical and biological research, v.54, n. 9, e11055, 2021. https://doi.org/10.1590/1414-431X2021e11055

SANTOS, G.G, et al. Bone regeneration using Wollastonite/β-TCP scaffolds implants in critical bone defect in rat calvaria. Biomedical physics & engineering express, v. 7, n. 5, 10.1088/2057-1976/ac1878, 2021. https://doi.org/10.1088/2057-1976/ac1878

GÖTZ, W., et al. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics, v. 11, n. 3, 117, 2019. https://doi.org/10.3390/pharmaceutics11030117

ILYAS, A., et al. Rapid Regeneration of Vascularized Bone by Nanofabricated Amorphous Silicon Oxynitrophosphide (SiONP) Overlays. Journal of biomedical nanotechnology, v. 15, n. 6, 2019. https://doi.org/10.1166/jbn.2019.2779

LIN, Q., et al. The in vivo dissolution of tricalcium silicate bone cement. Journal of biomedical materials research. Part A, v. 109, n. 12, p. 2527–2535, 2021. https://doi.org/10.1002/jbm.a.37247

MINARELLI, A.M.G., et al. Biological Response to Wollastonite Doped α-Tricalcium Phosphate Implants in Hard and Soft Tissues in Rats. Key Engineering Materials, 396-398, p. 7–10, 2008. https://doi.org/10.4028/www.scientific.net/kem.396-398.7

MONÇÃO, M., et al. Raman Spectroscopy Analysis of Wollastonite/Tricalcium Phosphate Glass-Ceramics after Implantation in Critical Bone Defect in Rats. Materials Sciences and Applications, v. 13, p. 317-333, 2022. https://doi.org/10.4236/msa.2022.135017.

MONTOYA, C., et al. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone research, v. 9, n. 1, 2021. https://doi.org/10.1038/s41413-020-00131-z

PALADINI, F.; POLLINI, M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. Materials (Basel, Switzerland), v. 15, n. 19, 6952, 2022. https://doi.org/10.3390/ma15196952

RIBAS, R., et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review. Ceramics International, v. 45, n. 17, p. 21051 - 21061, 2019. https://doi.org/10.1016/j.ceramint.2019.07.096.

SHAO, H., et al. 3D Robocasting Magnesium-doped Wollastonite/TCP Bioceramics Scaffolds with Improved Bone Regeneration Capacity in Critical Sized Calvarial Defects. J. Mater. Chem. B., v. 5, 10.1039/C7TB00217C, 2017.

SHAO, R., et al. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions. Biotechnology journal, v. 17, n. 4, e2100074, 2022. https://doi.org/10.1002/biot.202100074

ZENEBE, C.G. A Review on the Role of Wollastonite Biomaterial in Bone Tissue Engineering. BioMed research international, 2022, 4996530. https://doi.org/10.1155/2022/4996530

ZHOU, J., et al. Study on the influence of scaffold morphology and structure on osteogenic performance. Frontiers in bioengineering and biotechnology, v. 11, 1127162, 2023. https://doi.org/10.3389/fbioe.2023.1127162

Downloads

Publicado

2024-09-22

Como Citar

Monção, M. M., do Nascimento, C. S. ., Barreto, I. C. ., & de Araújo, R. P. C. . (2024). Análise morfológica e elementar da superfície de uma vitrocerâmica implantada em calvária de rato utilizando MEV e EDX. Peer Review, 6(15), 525–538. https://doi.org/10.53660/PRW-2541-4557

Edição

Seção

Articles