Antimicrobial packaging based on molecular docking of natural products

Embalagens antimicrobianas baseadas em docking molecular de produtos naturais

Autores

DOI:

https://doi.org/10.53660/PRW-2493-4518

Palavras-chave:

Molecular docking, Food packaging, Antimicrobial potential, Shelf life, Docagem molecular, Embalagem de alimento, Potencial antimicrobiano, Vida útil, Acoplamento molecular

Resumo

For a long time, studies on food packaging focused on antimicrobial agents, without, however, explaining the mechanisms. Therefore, in this analysis and opinion text, we approach the promising scenario, regarding the use of molecular docking techniques in the development of antimicrobial packaging. Molecular docking was identified as an important guidance tool, showing researchers which molecules had effective antimicrobial activity and their mechanisms. Furthermore, based on molecular docking studies, researchers were able to optimize in vitro and in vivo antimicrobial experiments. The targeted approach was efficient in developing antimicrobial packaging, which increased the shelf life of several foods. We consider molecular docking an indispensable tool for studies on antimicrobial packaging and a promising field of research.

Keywords: Molecular docking; Food packaging; Antimicrobial potential; Shelf life; Molecular docking.

Durante muito tempo, os estudos sobre embalagens de alimentos focaram-se nos agentes antimicrobianos, sem, no entanto, explicar os mecanismos. Portanto, neste texto de análise e opinião, abordamos o cenário promissor, no que diz respeito à utilização de técnicas de docking molecular no desenvolvimento de embalagens antimicrobianas. O docking molecular foi identificado como uma importante ferramenta de orientação, mostrando aos pesquisadores quais moléculas tinham atividade antimicrobiana eficaz e seus mecanismos. Além disso, com base em estudos de acoplamento molecular, os pesquisadores conseguiram otimizar experimentos antimicrobianos in vitro e in vivo. A abordagem direcionada foi eficiente no desenvolvimento de embalagens antimicrobianas, o que aumentou a vida útil de diversos alimentos. Consideramos o docking molecular uma ferramenta indispensável para estudos sobre embalagens antimicrobianas e um campo de pesquisa promissor.

Palavras-chave: Docagem molecular; Embalagem de alimentos; Potencial antimicrobiano; Vida útil; Acoplamento molecular.

 

Downloads

Não há dados estatísticos.

Referências

ALBUQUERQUE, G. A. et al. Supercritical CO2 Impregnation of Piper divaricatum Essential Oil in Fish (Cynoscion acoupa) Skin Gelatin Films. Food and Bioprocess Technology, v. 13, n. 10, p. 1765–1777, out. 2020.

ALI, F. T. et al. In silico ADMET, docking, anti-proliferative and antimicrobial evaluations of ethanolic extract of Euphorbia dendroides L. South African Journal of Botany, v. 150, p. 607–620, 1 nov. 2022.

ALQAHTANI, M. S. et al. Preparation, characterization, and in vitro-in silico biological activities of Jatropha pelargoniifolia extract loaded chitosan nanoparticles. International Journal of Pharmaceutics, v. 606, p. 120867, set. 2021.

AYESHA et al. Polyvinylpyrrolidone and chitosan-coated magnetite (Fe3O4) nanoparticles for catalytic and antimicrobial activity with molecular docking analysis. Journal of Environmental Chemical Engineering, v. 11, n. 3, p. 110088, jun. 2023.

BARATA, L. M. et al. Secondary Metabolic Profile as a Tool for Distinction and Characterization of Cultivars of Black Pepper (Piper nigrum L.) Cultivated in Pará State, Brazil. International Journal of Molecular Sciences, v. 22, n. 2, p. 890, jan. 2021.

BARBOSA, J. R. et al. Microbial Degradation of Food Products. Em: INAMUDDIN, .; AHAMED, M. I.; PRASAD, R. (Eds.). Recent Advances in Microbial Degradation. Environmental and Microbial Biotechnology. Singapore: Springer Singapore, 2021. p. 155–172.

BARBOSA, J. R.; CARVALHO, R. N. D. J. Food sustainability trends - How to value the açaí production chain for the development of food inputs from its main bioactive ingredients? Trends in Food Science & Technology, v. 124, p. 86–95, jun. 2022.

BARBOSA, J. R.; LOURENÇO, L. F. H.. Sulfated polysaccharides act as baits to interfere with the binding of the spike protein (SARS-CoV-2) to the ACE2 receptor and can be administered through food. Journal of Functional Foods, v. 104, p. 105532, maio 2023.

BARONE, A. S. et al. Green‐based active packaging: Opportunities beyond COVID‐19, food applications, and perspectives in circular economy—A brief review. Comprehensive Reviews in Food Science and Food Safety, v. 20, n. 5, p. 4881–4905, set. 2021.

BRITO, R. S. D. et al. K-Nearest Neighbor algorithm for selection of new gelatin-carboxymethylcellulose films with TiO₂ nanoparticles and propolis extract with antioxidant and light barrier activity. Food Packaging and Shelf Life, v. 38, p. 101119, set. 2023.

CHEN, Y. C. Beware of docking! Trends in Pharmacological Sciences, v. 36, n. 2, p. 78–95, fev. 2015.

SILVA, S. B. et al. Microbial Degradation of Aflatoxin. Em: INAMUDDIN, .; AHAMED, M. I.; PRASAD, R. (Eds.). Recent Advances in Microbial Degradation. Environmental and Microbial Biotechnology. Singapore: Springer Singapore, 2021. p. 1–18.

DAS, S. et al. Eugenol loaded chitosan nanoemulsion for food protection and inhibition of Aflatoxin B1 synthesizing genes based on molecular docking. Carbohydrate Polymers, v. 255, p. 117339, 1 mar. 2021.

DING, T.; LI, T.; LI, J. Virtual screening for quorum‐sensing inhibitors of Pseudomonas fluorescens P07 from a food‐derived compound database. Journal of Applied Microbiology, v. 127, n. 3, p. 763–777, set. 2019.

DING, T.; LIN, Q.; TAN, Y. Quality improvement in Scophthalmus maximus fillets during cold storage by coating with polylactic acid/hesperidin electrospun fiber. LWT, v. 170, p. 114080, dez. 2022.

FREITAS, M. M. S. et al. KNN algorithm and multivariate analysis to select and classify starch films. Food Packaging and Shelf Life, v. 34, p. 100976, dez. 2022.

EMRAN, T. B. et al. Molecular docking and inhibition studies on the interactions of Bacopa monnieri’s potent phytochemicals against pathogenic Staphylococcus aureus. DARU Journal of Pharmaceutical Sciences, v. 23, n. 1, p. 26, 17 abr. 2015.

FAROUK, A. et al. Prevention of Aflatoxin Occurrence Using Nuts-Edible Coating of Ginger Oil Nanoemulsions and Investigate the Molecular Docking Strategy. Plants, v. 11, n. 17, p. 2228, 28 ago. 2022.

FISCHER, E. Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft, v. 27, n. 3, p. 2985–2993, out. 1894.

GALBURT, E. A.; TOMKO, E. J. Conformational selection and induced fit as a useful framework for molecular motor mechanisms. Biophysical Chemistry, v. 223, p. 11–16, abr. 2017.

KALITA, R. D. et al. Antimycobacterial activity of linoleic acid and oleic acid obtained from the hexane extract of the seeds of Mesua ferrea L. and their in silico investigation. Indian Journal of Natural Products and Resources (IJNPR) [Formerly Natural Product Radiance (NPR)], v. 9, n. 2, p. 132–142, 25 set. 2018.

KHANZADA, B. et al. Profiling of Antifungal Activities and In Silico Studies of Natural Polyphenols from Some Plants. Molecules, v. 26, n. 23, p. 7164, jan. 2021.

KOSHLAND, D. E. The Key–Lock Theory and the Induced Fit Theory. Angewandte Chemie International Edition in English, v. 33, n. 23–24, p. 2375–2378, 3 jan. 1995.

LI, X. et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Computers in Biology and Medicine, v. 144, p. 105389, maio 2022.

MARTINS, L. H. D. S. et al. Carboxymethyl cellulose-coated polypropylene films containing essential oil for food preservation. Em: Biopolymer-Based Nano Films. [s.l.] Elsevier, 2021. p. 133–147.

M.V., A.; HARB, M.; SUNDARAM, R. Synthesis and characterization of cellulose/TiO2 nanocomposite: Evaluation of in vitro antibacterial and in silico molecular docking studies. Carbohydrate Polymers, v. 249, p. 116868, 1 dez. 2020.

PEREIRA, G. V. D. S. et al. Rheological characterization and influence of different biodegradable and edible coatings on postharvest quality of guava. Journal of Food Processing and Preservation, v. 45, n. 4, abr. 2021.

SANTOS, L. L. V. S. et al. Gelatin-chitosan coating increases shelf life and reduces microbial load in pirarucu fish (Arapaima gigas) during refrigerated storage. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, v. 22, n. 5, p. e4535, 6 maio 2024.

SELIM, S. et al. Insights into the Antimicrobial, Antioxidant, Anti-SARS-CoV-2 and Cytotoxic Activities of Pistacia lentiscus Bark and Phytochemical Profile; In Silico and In Vitro Study. Antioxidants, v. 11, n. 5, p. 930, maio 2022.

TESSEMA, F. B. et al. Flavonoids and Phenolic Acids from Aerial Part of Ajuga integrifolia (Buch.-Ham. Ex D. Don): Anti-Shigellosis Activity and In Silico Molecular Docking Studies. Molecules, v. 28, n. 3, p. 1111, jan. 2023.

VAKAYIL, R. et al. Invitro and insilico studies on antibacterial potentials of phytochemical extracts. Materials Today: Proceedings, v. 47, p. 453–460, 2021.

VEERAMUTHU, K. et al. In silico molecular docking approach and in vitro cytotoxic, antioxidant, antimicrobial and anti-inflammatory activity of Ixora brachiata Roxb. Process Biochemistry, v. 124, p. 150–159, 1 jan. 2023.

VIEIRA, L. L. et al. Emulsified films produced with proteins extracted from whitemouth croaker byproducts: development and characterization. Boletim do Instituto de Pesca, v. 44, n. 3, p. 53–57, 25 dez. 2018.

WANG, J. et al. Preservative effects of composite biopreservatives on goat meat during chilled storage: Insights into meat quality, high-throughput sequencing and molecular docking. LWT, v. 184, p. 115033, jul. 2023.

WANG, Y. et al. A review on application of molecular simulation technology in food molecules interaction. Current Research in Food Science, v. 5, p. 1873–1881, 2022.

YUAN, C.; HAO, X. Antibacterial mechanism of action and in silico molecular docking studies of Cupressus funebris essential oil against drug resistant bacterial strains. Heliyon, v. 9, n. 8, p. e18742, ago. 2023.

Downloads

Publicado

2024-08-25

Como Citar

Santos, L. L. V. dos, Barbosa, J. R., Costa, R. A. da, & Henriques, L. L. de F. (2024). Antimicrobial packaging based on molecular docking of natural products: Embalagens antimicrobianas baseadas em docking molecular de produtos naturais. Peer Review, 6(15), 203–216. https://doi.org/10.53660/PRW-2493-4518

Edição

Seção

Articles