Expressão diferencial no Lúpus Eritematoso Sistêmico sugere disfunção no mecanismo de produção de energia mitocondrial
DOI:
https://doi.org/10.53660/PRW-2446-4438Palavras-chave:
Biomarcadores, Estresse Oxidativo, Fosforilação Oxidativa, Mitocôndria, LúpusResumo
O Lúpus Eritematoso Sistêmico (LES) é uma das doenças autoimunes mais incidentes no mundo, mas há pouca clareza no que diz respeito ao seu aspecto patológico. À vista disso, estudos de novas vias se fazem necessários, como a influência mitocondrial nesta doença. Assim, este trabalho visou realizar a análise de expressão diferencial (AED) de genes nucleares de função mitocondrial no LES. Tratou-se de um estudo observacional descritivo in silico utilizando dados públicos de sequenciamento completo de RNA. Diante disso, foram encontrados três genes diferencialmente expressos (GDE) hipoexpressos (CDS1, SARDH e NIPSNAP3B), enquanto dois (TYMS e SCO2) estivam hiperexpressos. Em relação aos genes hipoexpressos, estes não foram datados em relação ao LES na literatura até esta pesquisa. Os genes hiperexpressos já foram associados às condições do LES e podem representar marcadores do estresse oxidativo causado pelo aumento da Fosforilação Oxidativa nestes indivíduos. Representa-se aqui cinco novos genes a serem considerados como possíveis biomarcadores genéticos mitocondriais no LES.
Downloads
Referências
AICH, A. et al. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife, v. 7, p. e32572, 30 jan. 2018.
ACCAPEZZATO, D. et al. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. International Journal of Molecular Sciences, v. 24, n. 7, p. 6578, 31 mar. 2023.
ASHBURNER, M. et al. Gene Ontology: tool for the unification of biology. Nature Genetics, v. 25, n. 1, p. 25–29, maio 2000.
BARRETT, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Research, v. 41, n. D1, p. D991–D995, 26 nov. 2012.
BERGERON, F. et al. Molecular cloning and tissue distribution of rat sarcosine dehydrogenase. European Journal of Biochemistry, v. 257, n. 3, p. 556–561, nov. 1998.
BING, P.-F. et al. Common Marker Genes Identified from Various Sample Types for Systemic Lupus Erythematosus. PLOS ONE, v. 11, n. 6, p. e0156234, 3 jun. 2016.
BLIGHE, K. EnhancedVolcano. 2018.
BRASIL. OFÍCIO CIRCULAR No 17/2022/CONEP/SECNS/MS. Orientações acerca do artigo 1.o da Resolução CNS n.o 510, de 7 de abril de 2016. , 5 jun. 2022. Disponível em: <https://conselho.saude.gov.br/images/Of%C3%ADcio_Circular_17_SEI_MS_-_25000.094016_2022_10.pdf>. Acesso em: 5 jun. 2022
BUANG, N. et al. Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nature Communications, v. 12, n. 1, p. 1980, 31 mar. 2021.
CAIELLI, S.; WAN, Z.; PASCUAL, V. Systemic Lupus Erythematosus Pathogenesis: Interferon and Beyond. Annual Review of Immunology, v. 41, n. 1, p. 533–560, 26 abr. 2023.
CHEN, P.-M.; TSOKOS, G. C. Mitochondria in the Pathogenesis of Systemic Lupus Erythematosus. Current Rheumatology Reports, v. 24, n. 4, p. 88–95, abr. 2022.
CHEN, X. et al. The Tumor Suppressor Activity of the Transmembrane Protein with Epidermal Growth Factor and Two Follistatin Motifs 2 (TMEFF2) Correlates with Its Ability to Modulate Sarcosine Levels. Journal of Biological Chemistry, v. 286, n. 18, p. 16091–16100, maio 2011.
CHENG, Q. et al. Novel Long Non-coding RNA Expression Profile of Peripheral Blood Mononuclear Cells Reveals Potential Biomarkers and Regulatory Mechanisms in Systemic Lupus Erythematosus. Frontiers in Cell and Developmental Biology, v. 9, p. 639321, 2 jun. 2021.
CHENG, H.-C. et al. Candidate Modifier Genes for the Penetrance of Leber’s Hereditary Optic Neuropathy. International Journal of Molecular Sciences, v. 23, n. 19, p. 11891, 6 out. 2022.
DEVI, A.R.R.; LINGAPPA, L.; NAUSHAD, S. Identification of Two Novel Mutations in Aminomethyltransferase Gene in Cases of Glycine Encephalopathy. Journal of Pediatric Genetics, v. 07, n. 03, p. 097–102, set. 2018.
DOS SANTOS, R. S. et al. dUTPase ( DUT ) Is Mutated in a Novel Monogenic Syndrome With Diabetes and Bone Marrow Failure. Diabetes, v. 66, n. 4, p. 1086–1096, 1 abr. 2017.
DU, W. et al. SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells. Stem Cells, v. 34, n. 4, p. 960–971, 1 abr. 2016.
FATOYE, F.; GEBRYE, T.; MBADA, C. Global and regional prevalence and incidence of systemic lupus erythematosus in low-and-middle income countries: a systematic review and meta-analysis. Rheumatology International, v. 42, n. 12, p. 2097–2107, 25 ago. 2022.
FELTEN, R. et al. New biologics and targeted therapies in systemic lupus: From new molecular targets to new indications. A systematic review. Joint Bone Spine, v. 90, n. 2, p. 105523, mar. 2023.
FERREIRA, T. A. R. Identificação de potenciais biomarcadores do lúpus eritematoso sistêmico através de abordagem proteômica. 25 set. 2015.
GRIESHABER-BOUYER, R. et al. Ageing and interferon gamma response drive the phenotype of neutrophils in the inflamed joint. Annals of the Rheumatic Diseases, v. 81, n. 6, p. 805–814, jun. 2022.
GUIJARRO, M. V. et al. TYMS promotes genomic instability and tumor progression in Ink4a/Arf null background. Oncogene, v. 42, n. 23, p. 1926–1939, 6 jun. 2023.
HE, H. et al. Alteration of the tumor suppressor SARDH in sporadic colorectal cancer: A functional and transcriptome profiling‐based study. Molecular Carcinogenesis, v. 58, n. 6, p. 957–966, jun. 2019.
ILLESCAS‐MONTES, R. et al. Infectious processes and systemic lupus erythematosus. Immunology, v. 158, n. 3, p. 153–160, nov. 2019.
JOSHI-TOPE, G. Reactome: a knowledgebase of biological pathways. Nucleic Acids Research, v. 33, n. Database issue, p. D428–D432, 17 dez. 2004.
KINGSMORE, K. M. et al. Altered expression of genes controlling metabolism characterizes the tissue response to immune injury in lupus. Scientific Reports, v. 11, n. 1, p. 14789, 20 jul. 2021.
KOJIMA, R. et al. Secretome Analyses Identify FKBP4 as a GBA1-Associated Protein in CSF and iPS Cells from Parkinson’s Disease Patients with GBA1 Mutations. International Journal of Molecular Sciences, v. 25, n. 1, p. 683, 4 jan. 2024.
LAZAR, S.; KAHLENBERG, J. M. Systemic Lupus Erythematosus: New Diagnostic and Therapeutic Approaches. Annual Review of Medicine, v. 74, n. 1, p. 339–352, 27 jan. 2023.
LI, H. et al. Decoding the mitochondrial connection: development and validation of biomarkers for classifying and treating systemic lupus erythematosus through bioinformatics and machine learning. BMC Rheumatology, v. 7, n. 1, p. 44, 4 dez. 2023.
LOVE, M. I.; HUBER, W.; ANDERS, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, v. 15, n. 12, p. 550, dez. 2014.
LU, Z. et al. Increased oxidative stress contributes to impaired peripheral CD56dimCD57+ NK cells from patients with systemic lupus erythematosus. Arthritis Research & Therapy, v. 24, n. 1, p. 48, dez. 2022.
MARCHIANO, F.; HAERING, M.; HABERMANN, B. H. The mitoXplorer 2.0 update: integrating and interpreting mitochondrial expression dynamics within a cellular context. Nucleic Acids Research, v. 50, n. W1, p. W490–W499, 5 jul. 2022.
MAZDAK, M. et al. DNA methylation of sarcosine dehydrogenase (SARDH) loci as a prognosticator for renal cell carcinoma. Oncology Reports, 9 set. 2019.
MARTINS, I. F. Lupus eritematoso sistémico: uma revisão etiopatogenica. masterThesis. 2016.
MOBARREZ, F. et al. Microparticles in the blood of patients with SLE: Size, content of mitochondria and role in circulating immune complexes. Journal of Autoimmunity, v. 102, p. 142–149, ago. 2019.
MONTOJO, J. et al. GeneMANIA: Fast gene network construction and function prediction for Cytoscape. F1000Research, v. 3, p. 153, 1 jul. 2014
NAUSHAD, S. M. et al. Cross-Talk Between One-Carbon Metabolism and Xenobiotic Metabolism: Implications on Oxidative DNA Damage and Susceptibility to Breast Cancer. Cell Biochemistry and Biophysics, v. 61, n. 3, p. 715–723, dez. 2011.
OGATA, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, v. 27, n. 1, p. 29–34, 1 jan. 1999.
OLIVEIRA, R. C.de; CAVALCANTE, G. C. Differential Expression Analysis in Genes Associated with the Mitochondrial Metabolism Reveals a Potential Influence on the Progression of Glioblastoma from Astrocytoma. IECC 2024. Anais... Em: IECC 2024. MDPI, 27 mar. 2024.
OSTOJIĆ, O. et al. The effects of chronic muscle use and disuse on cardiolipin metabolism. Journal of Applied Physiology, v. 114, n. 4, p. 444–452, 15 fev. 2013.
PEDRERA, C.L.; AGUIRRE ZAMORANO, M. A.; PÉREZ SÁNCHEZ, C. Mecanismos de aterosclerosis y enfermedad cardiovascular en el síndrome antifosfolípido y el lupus eritematoso sistémico. Alternativas terapéuticas. Medicina clínica, v. 149, n. 4, p. 160–169, 2017.
R CORE TEAM. R: The R Project for Statistical Computing. 2024.
RÁCZ, G. A. et al. Discovery of two new isoforms of the human DUT gene. Scientific Reports, v. 13, n. 1, p. 7760, 12 maio 2023.
RENAUDINEAU, Y.; BROOKS, W.; BELLIERE, J. Lupus Nephritis Risk Factors and Biomarkers: An Update. International Journal of Molecular Sciences, v. 24, n. 19, p. 14526, 25 set. 2023.
RSTUDIO TEAM. RStudio: Integrated Development for R. RStudio. 2024.
SAFARI-ALIGHIARLOO, N. et al. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterology and Hepatology From Bed to Bench, v. 7, n. 1, p. 17–31, 2014.
SHI, Y. et al. Relationship between disease activity, organ damage and health-related quality of life in patients with systemic lupus erythematosus: A systemic review and meta-analysis. Autoimmunity Reviews, v. 20, n. 1, p. 102691, jan. 2021.
SUMMERS, C. M. et al. Functional Polymorphisms of Folate-Metabolizing Enzymes in Relation to Homocysteine Concentrations in Systemic Lupus Erythematosus. The Journal of Rheumatology, v. 35, n. 11, p. 2179–2186, nov. 2008.
SUNG, H. J. et al. Mitochondrial respiration protects against oxygen-associated DNA damage. Nature Communications, v. 1, n. 1, p. 5, 12 abr. 2010.
WANG, Y.; MA, Q.; HUO, Z. Identification of hub genes, pathways, and related transcription factors in systemic lupus erythematosus: A preliminary bioinformatics analysis. Medicine, v. 100, n. 25, p. e26499, 25 jun. 2021.
WICKHAM, H. ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer New York, 2009.
WU, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, v. 2, n. 3, p. 100141, ago. 2021.
XU, Y. et al. CDP-DAG synthase 1 and 2 regulate lipid droplet growth through distinct mechanisms. Journal of Biological Chemistry, v. 294, n. 45, p. 16740–16755, nov. 2019.
YANG, B. et al. Decreased miR-4512 Levels in Monocytes and Macrophages of Individuals With Systemic Lupus Erythematosus Contribute to Innate Immune Activation and Neutrsophil NETosis by Targeting TLR4 and CXCL2. Frontiers in Immunology, v. 12, p. 756825, 14 out. 2021.