Carbon quantum dots of Moringa oleifera with bactericidal action
DOI:
https://doi.org/10.53660/1654.prw3237Palavras-chave:
Nanotecnologia, Oxigênio singleto, Drogas, SaúdeResumo
In this work, carbon quantum dots (CQDs) were synthesized using a hydrothermal reactor. The precursor for the CQDs was Moringa oleifera seed oil, extracted using a 1:8 ethanol-to-mass ratio through ultrasound-assisted extraction (50 ºC, 30 min). The extract was then purified using a rotary evaporator (50 ºC, 50 rpm) to remove the solvent, followed by centrifugation (12,000 rpm, 10 min). Subsequently, the oil was transferred to a Teflon-lined capsule within a stainless-steel reactor and heated in a muffle furnace (210 ºC, 24 h). The synthesized CQDs were then centrifuged (12,000 rpm, 10 min) and filtered through a 0.22 μm membrane. These CQDs exhibited high fluorescence and, when activated photodynamically with white visible light, showed the ability to inhibit the growth of the Gram-positive bacterium Staphylococcus aureus, a common cause of skin infections. In recent decades, the inappropriate use of antibiotics has led to increased bacterial resistance, resulting in higher mortality rates in humans and animals. Therefore, the development of nanomaterials with antimicrobial properties, through a simple, cost-effective, and sustainable route, is essential for public health and safety.
Downloads
Referências
ARKAN, E., BARATI, A., RAHMANPANAH, M., HOSSEINZADEH, L., MORADI, S., & HAJIALYANI, M. (2018). Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells. Advanced Pharmaceutical Bulletin, 8(1), 149–155. https://doi.org/10.15171/apb.2018.018
ATCHUDAN, R., JEBAKUMAR IMMANUEL EDISON, T. N., SHANMUGAM, M., PERUMAL, S., SOMANATHAN, T., & LEE, Y. R. (2021). Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E: Low-Dimensional Systems and Nanostructures, 126. https://doi.org/10.1016/j.physe.2020.114417
AYERZA(H), R. (2019). Seed characteristics, oil content and fatty acid composition of moringa (Moringa oleifera Lam.) seeds from three arid land locations in Ecuador. Industrial Crops and Products, 140. https://doi.org/10.1016/j.indcrop.2019.111575
CARBONARO, C. M., CHIRIU, D., STAGI, L., CASULA, M. F., THAKKAR, S. V., MALFATTI, L., SUZUKI, K., RICCI, P. C., & CORPINO, R. (2018). Carbon Dots in Water and Mesoporous Matrix: Chasing the Origin of their Photoluminescence. Journal of Physical Chemistry C, 122(44), 25638–25650. https://doi.org/10.1021/acs.jpcc.8b08012
CARBONARO, CORPINO, SALIS, MOCCI, THAKKAR, OLLA, & RICCI. (2019). On the Emission Properties of Carbon Dots: Reviewing Data and Discussing Models. C — Journal of Carbon Research, 5(4), 60. https://doi.org/10.3390/c5040060
FAKAYODE, O. A., & AJAV, E. A. (2016). Process optimization of mechanical oil expression from Moringa (Moringa oleifera) seeds. Industrial Crops and Products, 90, 142–151. https://doi.org/10.1016/j.indcrop.2016.06.017
GAO, X., ZHANG, Y., FU, Z., & CUI, F. (2022). Preparation of lysosomal targeted fluorescent carbon dots and its applications in multi-color cell imaging and information encryption. Optical Materials, 131. https://doi.org/10.1016/j.optmat.2022.112701
GHARSALLAH, K., REZIG, L., MSAADA, K., CHALH, A., & SOLTANI, T. (2021). Chemical composition and profile characterization of moringa oleifera seed oil. South African Journal of Botany, 137, 475–482. https://doi.org/10.1016/j.sajb.2020.11.014
GOSWAMI, J., ROHMAN, S. S., GUHA, A. K., BASYACH, P., SONOWAL, K., BORAH, S. P., SAIKIA, L., & HAZARIKA, P. (2022). Phosphoric acid assisted synthesis of fluorescent carbon dots from waste biomass for detection of Cr(VI) in aqueous media. Materials Chemistry and Physics, 286. https://doi.org/10.1016/j.matchemphys.2022.126133
GRUNDMANN, H., AIRES-DE-SOUSA, M., BOYCE, J., & TIEMERSMA, E. (2006). Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Www.Thelancet.Com, 368. https://doi.org/10.1016/S0140
GUEDES, C. C. DA S., BUONAFINA-PAZ, M. D. S., ROCHA, S. K. L., COELHO, L. C. B. B., NAVARRO, D. M. DO A. F., NEVES, R. P., NAPOLEÃO, T. H., DE OLIVEIRA, A. P. S., DA SILVA, P. M., & PAIVA, P. M. G. (2022). Antimycotic potential of protein preparation and fixed oil obtained from Moringa oleifera seeds against Trichophyton tonsurans. South African Journal of Botany, 150, 443–450. https://doi.org/10.1016/j.sajb.2022.08.023
GUPTA, N., RAI, D. B., JANGID, A. K., & KULHARI, H. (2019). Use of nanotechnology in antimicrobial therapy. In Methods in Microbiology (Vol. 46, pp. 143–172). Academic Press Inc. https://doi.org/10.1016/bs.mim.2019.04.004
HOAN, B. T., TAM, P. D., & PHAM, V. H. (2019). Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice. Journal of Nanotechnology, 2019. https://doi.org/10.1155/2019/2852816
JUNG, H., SAPNER, V. S., ADHIKARI, A., SATHE, B. R., & PATEL, R. (2022). Recent Progress on Carbon Quantum Dots Based Photocatalysis. In Frontiers in Chemistry (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fchem.2022.881495
KALANIDHI, K., & NAGARAAJ, P. (2021). Facile and Green synthesis of fluorescent N-doped carbon dots from betel leaves for sensitive detection of Picric acid and Iron ion. Journal of Photochemistry and Photobiology A: Chemistry, 418. https://doi.org/10.1016/j.jphotochem.2021.113369
LINZ, M. S., MATTAPPALLIL, A., FINKEL, D., & PARKER, D. (2023). Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. In Antibiotics (Vol. 12, Issue 3). MDPI. https://doi.org/10.3390/antibiotics12030557
MENG, W., BAI, X., WANG, B., LIU, Z., LU, S., & YANG, B. (2019). Biomass-Derived Carbon Dots and Their Applications. In Energy and Environmental Materials (Vol. 2, Issue 3, pp. 172–192). John Wiley and Sons Inc. https://doi.org/10.1002/eem2.12038
MOREIRA, D. R., CHAVES, P. O. B., FERREIRA, E. N., ARRUDA, T. B. M. G., RODRIGUES, F. E. A., NETO, J. F. C., PETZHOLD, C. L., MAIER, M. E., & RICARDO, N. M. P. S. (2020). Moringa polyesters as eco-friendly lubricants and its blends with naphthalenic lubricant. Industrial Crops and Products, 158. https://doi.org/10.1016/j.indcrop.2020.112937
NIE, X., JIANG, C., WU, S., CHEN, W., LV, P., WANG, Q., LIU, J., NARH, C., CAO, X., GHILADI, R. A., & WEI, Q. (2020). Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. Journal of Photochemistry and Photobiology B: Biology, 206. https://doi.org/10.1016/j.jphotobiol.2020.111864
ROCA, I., AKOVA, M., BAQUERO, F., CARLET, J., CAVALERI, M., COENEN, S., COHEN, J., FINDLAY, D., GYSSENS, I., HEURE, O. E., KAHLMETER, G., KRUSE, H., LAXMINARAYAN, R., LIÉBANA, E., LÓPEZ-CERERO, L., MACGOWAN, A., MARTINS, M., RODRÍGUEZ-BAÑO, J., ROLAIN, J. M., VILA, J. (2015). The global threat of antimicrobial resistance: science for intervention. New Microbes and New Infections, 6, 22–29. https://doi.org/10.1016/J.NMNI.2015.02.007
RUIZ, V., MAUDES, J., GRANDE, H. J., & PÉREZ-MARQUEZ, A. (2022). Light-activated antibacterial electrospun polyacrylonitrile-graphene quantum dot nanofibrous membranes. Materials Today Communications, 32. https://doi.org/10.1016/j.mtcomm.2022.104112
SHEN, C. L., LIU, H. R., LOU, Q., WANG, F., LIU, K. K., DONG, L., & SHAN, C. X. (2022). Recent progress of carbon dots in targeted bioimaging and cancer therapy. In Theranostics (Vol. 12, Issue 6, pp. 2860–2893). Ivyspring International Publisher. https://doi.org/10.7150/thno.70721
ST. DENIS, T. G., DAI, T., IZIKSON, L., ASTRAKAS, C., ANDERSON, R. R., HAMBLIN, M. R., & TEGOS, G. P. (2011). All you need is light, antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. In Virulence (Vol. 2, Issue 6, pp. 509–520). Taylor and Francis Inc. https://doi.org/10.4161/viru.2.6.17889
UEDA YAMAGUCHI, N., CUSIOLI, L. F., QUESADA, H. B., CAMARGO FERREIRA, M. E., FAGUNDES-KLEN, M. R., SALCEDO VIEIRA, A. M., GOMES, R. G., VIEIRA, M. F., & BERGAMASCO, R. (2021). A review of Moringa oleifera seeds in water treatment: Trends and future challenges. In Process Safety and Environmental Protection (Vol. 147, pp. 405–420). Institution of Chemical Engineers. https://doi.org/10.1016/j.psep.2020.09.044
VENTURA, A. C. S. S. B., DE PAULA, T., GONÇALVES, J. P., SOLEY, B. DA S., CRETELLA, A. B. M., OTUKI, M. F., & CABRINI, D. A. (2021). The oil from Moringa oleifera seeds accelerates chronic skin wound healing. Phytomedicine Plus, 1(3). https://doi.org/10.1016/j.phyplu.2021.100099
WAINWRIGHT, M., MAISCH, T., NONELL, S., PLAETZER, K., ALMEIDA, A., TEGOS, G. P., & HAMBLIN, M. R. (2017). Photoantimicrobials—are we afraid of the light? In The Lancet Infectious Diseases (Vol. 17, Issue 2, pp. e49–e55). Lancet Publishing Group. https://doi.org/10.1016/S1473-3099(16)30268-7
WANG, S., LENZINI, F., CHEN, D., TANNER, P., HAN, J., THIEL, D., LOBINO, M., & LI, Q. (2023). Chemically derived graphene quantum dots for high-strain sensing. Journal of Materials Science and Technology, 141, 110–115. https://doi.org/10.1016/j.jmst.2022.08.041
WERTHEIM, H. F. L., MELLES, D. C., VOS, M. C., VAN LEEUWEN, W., VAN BELKUM, A., VERBRUGH, H. A., & NOUWEN, J. L. (2005). The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infectious Diseases, 5(12), 751–762. https://doi.org/10.1016/S1473-3099(05)70295-4
WU, X., ABBAS, K., YANG, Y., LI, Z., TEDESCO, A. C., & BI, H. (2022). Photodynamic Anti-Bacteria by Carbon Dots and Their Nano-Composites. In Pharmaceuticals (Vol. 15, Issue 4). MDPI. https://doi.org/10.3390/ph15040487
WU, Y., LI, C., VAN DER MEI, H. C., BUSSCHER, H. J., & REN, Y. (2021). Carbon quantum dots derived from different carbon sources for antibacterial applications. In Antibiotics (Vol. 10, Issue 6). MDPI AG. https://doi.org/10.3390/antibiotics10060623
XIE, Y., CHENG, D., LIU, X., & HAN, A. (2019). Green hydrothermal synthesis of N-doped carbon dots from biomass highland barley for the detection of Hg2+. Sensors (Switzerland), 19(14). https://doi.org/10.3390/s19143169
YU, K., & SCHANZE, K. S. (2023). Commemorating The Nobel Prize in Chemistry 2023 for the Discovery and Synthesis of Quantum Dots. ACS Central Science. https://doi.org/10.1021/acscentsci.3c01296
ZHENG, X. T., ANANTHANARAYANAN, A., LUO, K. Q., & CHEN, P. (2015). Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. In Small (Vol. 11, Issue 14, pp. 1620–1636). Wiley-VCH Verlag. https://doi.org/10.1002/smll.201402648
ZHONG, J., WANG, Y., YANG, R., LIU, X., YANG, Q., & QIN, X. (2018). The application of ultrasound and microwave to increase oil extraction from Moringa oleifera seeds. Industrial Crops and Products, 120, 1–10. https://doi.org/10.1016/j.indcrop.2018.04.028
ZHUANG, P., LI, K., LI, D., QIAO, H., E, Y., WANG, M., SUN, J., MEI, X., & LI, D. (2021). Assembly of Carbon Dots into Frameworks with Enhanced Stability and Antibacterial Activity. Nanoscale Research Letters, 16(1). https://doi.org/10.1186/s11671-021-03582-3