Renal effects of isolated resistance training in rats fed with high-fat diet
DOI:
https://doi.org/10.53660/1370.prw2906Palavras-chave:
Chronic kidney disease, Obesity, InflammationResumo
Aims: Regular physical activity is one of the most critical actions for treatment and prevention of obesity. Our aim is to evaluate the effects of resistance training in the inflammatory profile and renal damage promoted by high-fat diet in rats. Methods: Male Wistar rats were randomized into four groups: 12 weeks of a standard diet without (C) or with association with a 12 weeks resistance training program (RT), and high-fat diet without (HF) or with association with resistance training (HF-RT). Adiponectin, interleukin-6, leptin, MCP-1 and insulin were evaluated in plasma or serum. Glomerular size was analyzed by histology and total kidney content of mTOR, p-mTOR, PAI-1, STAT3 and p-STAT3 were quantified by western blot. Results: High-fat diet increased leptin, MCP-1 and TNF-α levels and resistance training normalized these levels in these animals. Glomerular tuff hypertrophy and renal increase in STAT, p-STAT3, mTOR and p-mTOR expression were observed in HF animals and normalized with RT. Conclusions: Our resistance training protocol had beneficial effects on proinflammatory state ang glomerular alterations in rats fed high-fat diet.
Downloads
Referências
ALICIC, R. Z.; PATAKOTI, R.; TUTTLE, K. R. Direct and Indirect Effects of Obesity on the Kidney. Advances in Chronic Kidney Disease, v. 20, n. 2, p. 121–127, mar. 2013. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/23439370>. Acesso em: 8 out. 2019.
ASAD, M. et al. The effects of three training methods endurance, resistance and concurrent on adiponectin resting levels in overweighed untrained men. Bratislava Medical Journal, v. 113, n. 11, p. 664–668, 2012.
CANO, P. et al. Effect of a High-fat Diet on 24-Hour Pattern of Circulating Adipocytokines in Rats. Obesity, v. 17, n. 10, p. 1866–1871, 1 out. 2009. Disponível em: <https://onlinelibrary.wiley.com/doi/full/10.1038/oby.2009.200>. Acesso em: 18 set. 2023.
CHEN, G. et al. Rapamycin Ameliorates Kidney Fibrosis by Inhibiting the Activation of mTOR Signaling in Interstitial Macrophages and Myofibroblasts. PLoS ONE, v. 7, n. 3, p. e33626, 28 mar. 2012. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/22470459>. Acesso em: 8 out. 2019.
CHEN, J.-K. et al. Role of Mammalian Target of Rapamycin Signaling in Compensatory Renal Hypertrophy. Journal of the American Society of Nephrology, v. 16, n. 5, p. 1384–1391, maio 2005. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/15788477>. Acesso em: 8 out. 2019.
CHUPEL, M. U. et al. Strength Training Decreases Inflammation and Increases Cognition and Physical Fitness in Older Women with Cognitive Impairment. Frontiers in physiology, v. 8, p. 377, 2017. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/28659812>. Acesso em: 8 out. 2019.
DIAS, I. et al. Effects of Resistance Training on Obese Adolescents. Medicine & Science in Sports & Exercise, v. 47, n. 12, p. 2636–2644, dez. 2015. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/25973557>. Acesso em: 8 out. 2019.
DIAS, I. B. F. et al. Relationships between emerging cardiovascular risk factors, z-BMI, waist circumference and body adiposity index (BAI) on adolescents. Clinical Endocrinology, v. 79, n. 5, p. n/a-n/a, mar. 2013. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/23469930>. Acesso em: 2 out. 2018.
EDDY, A. A.; FOGO, A. B. Plasminogen Activator Inhibitor-1 in Chronic Kidney Disease: Evidence and Mechanisms of Action. Journal of the American Society of Nephrology, v. 17, n. 11, p. 2999–3012, nov. 2006. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/17035608>. Acesso em: 8 out. 2019.
FATOUROS, I. G. et al. Leptin and Adiponectin Responses in Overweight Inactive Elderly following Resistance Training and Detraining Are Intensity Related. The Journal of Clinical Endocrinology & Metabolism, v. 90, n. 11, p. 5970–5977, nov. 2005. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/16091494>. Acesso em: 8 out. 2019.
FRAGALA, M. S. et al. Resistance training for older adults: Position statement from the national strength and conditioning association. Journal of Strength and Conditioning Research, v. 33, n. 8, p. 2019–2052, 2019. Disponível em: <https://journals.lww.com/nsca-jscr/fulltext/2019/08000/resistance_training_for_older_adults__position.1.aspx>. Acesso em: 13 ago. 2023.
GUTTIERRES, A. P. M.; MARINS, J. C. B. Os efeitos do treinamento de força sobre os fatores de risco da síndrome metabólica. Revista Brasileira de Epidemiologia, v. 11, n. 1, p. 147–158, mar. 2008. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X2008000100014&lng=pt&tlng=pt>. Acesso em: 8 out. 2019.
HUANG, Y.; NOBLE, N. An unexpected role of plasminogen activator inhibitor-type 1 (PAI-1) in renal fibrosis. Kidney International, v. 67, n. 6, p. 2502–2503, jun. 2005. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/15882299>. Acesso em: 8 out. 2019.
LEE, C.-H.; INOKI, K.; GUAN, K.-L. mTOR Pathway as a Target in Tissue Hypertrophy. Annual Review of Pharmacology and Toxicology, v. 47, n. 1, p. 443–467, fev. 2007. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/16968213>. Acesso em: 8 out. 2019.
LEITE, R. D. et al. Effects of ovariectomy and resistance training on lipid content in skeletal muscle, liver, and heart; fat depots; and lipid profile. Applied Physiology, Nutrition, and Metabolism, v. 34, n. 6, p. 1079–1086, dez. 2009. Disponível em: <http://www.nrcresearchpress.com/doi/10.1139/H09-116>. Acesso em: 8 out. 2019.
LEON-CABRERA, S. et al. Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings. Frontiers in Integrative Neuroscience, v. 7, n. AUG, p. 55308, 23 ago. 2013. . Acesso em: 18 set. 2023.
LIEBERTHAL, W.; LEVINE, J. S. The Role of the Mammalian Target Of Rapamycin (mTOR) in Renal Disease. Journal of the American Society of Nephrology, v. 20, n. 12, p. 2493–2502, dez. 2009. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/19875810>. Acesso em: 8 out. 2019.
MATOBA, K. et al. Rho-kinase mediates TNF-α-induced MCP-1 expression via p38 MAPK signaling pathway in mesangial cells. Biochemical and Biophysical Research Communications, v. 402, n. 4, p. 725–730, 26 nov. 2010. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/20977889>. Acesso em: 8 out. 2019.
MUNSHI, R. et al. MCP-1 gene activation marks acute kidney injury. Journal of the American Society of Nephrology : JASN, v. 22, n. 1, p. 165–75, jan. 2011. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/21071523>. Acesso em: 8 out. 2019.
PANVELOSKI-COSTA, A. C. et al. Treinamento resistido reduz inflamação em músculo esquelético e melhora a sensibilidade à insulina periférica em ratos obesos induzidos por dieta hiperlipídica. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 55, n. 2, p. 155–163, mar. 2011. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27302011000200008&lng=pt&tlng=pt>. Acesso em: 8 out. 2019.
PINHEIRO, A. R. et al. Beneficial effects of physical exercise on hypertension and cardiovascular adverse remodeling of diet-induced obese rats. Nutrition, Metabolism and Cardiovascular Diseases, v. 17, n. 5, p. 365–375, jun. 2007. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/17008074>. Acesso em: 8 out. 2019.
PRETZ, D. et al. Hyperleptinemia as a contributing factor for the impairment of glucose intolerance in obesity. The FASEB Journal, v. 35, n. 2, p. e21216, 1 fev. 2021. Disponível em: <https://onlinelibrary.wiley.com/doi/full/10.1096/fj.202001147R>. Acesso em: 18 set. 2023.
ROPELLE, E. R. et al. IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKKβ and ER Stress Inhibition. PLoS Biology, v. 8, n. 8, p. e1000465, 24 ago. 2010. Disponível em: <https://dx.plos.org/10.1371/journal.pbio.1000465>. Acesso em: 8 out. 2019.
SARTIPY, P.; LOSKUTOFF, D. J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, v. 100, n. 12, p. 7265–7270, 10 jun. 2003. Disponível em: <https://www.pnas.org/doi/abs/10.1073/pnas.1133870100>. Acesso em: 18 set. 2023.
SENE-FIORESE, M. et al. Efficiency of Intermittent Exercise on Adiposity and Fatty Liver in Rats Fed With High-fat Diet. Obesity, v. 16, n. 10, p. 2217–2222, out. 2008. Disponível em: <http://doi.wiley.com/10.1038/oby.2008.339>. Acesso em: 8 out. 2019.
STEMMER, K. et al. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. Disease models & mechanisms, v. 5, n. 5, p. 627–35, set. 2012. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/22422828>. Acesso em: 7 out. 2019.
STRASSER, B.; ARVANDI, M.; SIEBERT, U. Resistance training, visceral obesity and inflammatory response: a review of the evidence. Obesity Reviews, v. 13, n. 7, p. 578–591, jul. 2012. Disponível em: <http://doi.wiley.com/10.1111/j.1467-789X.2012.00988.x>. Acesso em: 8 out. 2019.
TALEBI-GARAKANI, E.; SAFARZADE, A. Resistance training decreases serum inflammatory markers in diabetic rats. Endocrine, v. 43, n. 3, p. 564–570, 5 jun. 2013. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/22948775>. Acesso em: 8 out. 2019.
TANG, J.; YAN, H.; ZHUANG, S. Inflammation and Oxidative Stress in Obesity-Related Glomerulopathy. International Journal of Nephrology, v. 2012, p. 1–11, 5 abr. 2012. Disponível em: <http://www.hindawi.com/journals/ijn/2012/608397/>. Acesso em: 8 out. 2019.
WEI, P. et al. Glomerular structural and functional changes in a high-fat diet mouse model of early-stage Type 2 diabetes. Diabetologia, v. 47, n. 9, p. 1541–1549, set. 2004. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/15338127/>. Acesso em: 9 out. 2023.
ZHENG, S. et al. Role of STAT3/mTOR pathway in chronic kidney injury. American Journal of Translational Research, v. 12, n. 7, p. 3302, 2020. Disponível em: . Acesso em: 9 out. 2023.