Investigation of microstructure and hardness of WC-Co modified by graphene oxide deposited by HVOF
DOI:
https://doi.org/10.53660/1207.prw2714Palavras-chave:
Óxido de grafeno, Aspersão térmica, HVOF, Revestimento, WC-CoResumo
O processo de aspersão por combustível de oxigênio de alta velocidade (HVOF) foi utilizado para fabricar carboneto de tungstênio - 12% em peso de cobalto (WC-12Co) com diferentes teores de óxido de grafeno (GO) (0, 0,5, 0,75 e 1% em peso). Foram utilizadas as técnicas de DRX, MEV-FEG, Raman e microdureza Vickers para caracterizar os pós e os revestimentos aplicados. Os resultados experimentais revelaram que os valores de microdureza aumentaram em 19,6% na presença de GO, demonstrando que o GO melhora as propriedades mecânicas do revestimento.
Downloads
Referências
AIN, Q. T.; HAQ, S. H.; ALSHAMMARI, A.; AL-MUTLAQ, M. A. et al. The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein journal of nanotechnology, 10, n. 1, p. 901-911, 2019.
AKSU, Z.; ŞAHIN, C. H.; ALANYALıOĞLU, M. Fabrication of Janus GO/rGO humidity actuator by one-step electrochemical reduction route. Sensors and Actuators B: Chemical, 354, p. 131198, 2022.
ALGUL, H.; TOKUR, M.; OZCAN, S.; UYSAL, M. et al. The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites. Applied Surface Science, 359, p. 340-348, 2015.
ASTM, A. E384: standard test method for knoop and vickers hardness of materials. ASTM Stand, p. 1-43, 2012.
CHAUHAN, D. S.; QURAISHI, M.; ANSARI, K.; SALEH, T. A. Graphene and graphene oxide as new class of materials for corrosion control and protection: Present status and future scenario. Progress in Organic Coatings, 147, p. 105741, 2020.
CHEN, H.; GOU, G.; TU, M.; LIU, Y. Characteristics of nano particles and their effect on the formation of nanostructures in air plasma spraying WC–17Co coating. Surface and Coatings Technology, 203, n. 13, p. 1785-1789, 2009.
CLAVERÍA, I.; ELDUQUE, D.; LOSTALÉ, A.; FERNÁNDEZ, Á. et al. Analysis of self-lubrication enhancement via PA66 strategies: Texturing and nano-reinforcement with ZrO2 and graphene. Tribology International, 131, p. 332-342, 2019.
DERELIZADE, K.; VENTURI, F.; WELLMAN, R.; KHOLOBYSOV, A. et al. Wear performance of graphene nano platelets incorporated WC-Co coatings deposited by hybrid high velocity oxy fuel thermal spray. Wear, 482, p. 203974, 2021.
DING, Z.-X.; WEI, C.; QUN, W. Resistance of cavitation erosion of multimodal WC-12Co coatings sprayed by HVOF. Transactions of Nonferrous Metals Society of China, 21, n. 10, p. 2231-2236, 2011.
DRAPER, B.; YEE, W. L.; PEDRANA, A.; KYI, K. P. et al. Reducing liver disease-related deaths in the Asia-Pacific: the important role of decentralised and non-specialist led hepatitis C treatment for cirrhotic patients. The Lancet Regional Health–Western Pacific, 20, 2022.
GUILEMANY, J.; DOSTA, S.; MIGUEL, J. The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders. Surface and Coatings Technology, 201, n. 3-4, p. 1180-1190, 2006.
HE, J.; SCHOENUNG, J. M. Nanostructured coatings. Materials Science and Engineering: A, 336, n. 1-2, p. 274-319, 2002.
HE, P.; MA, G.; WANG, H.; YONG, Q. et al. Microstructure and mechanical properties of a novel plasma-spray TiO2 coating reinforced by CNTs. Ceramics International, 42, n. 11, p. 13319-13325, 2016.
IJAOLA, A. O.; FARAYIBI, P. K.; ASMATULU, E. Superhydrophobic coatings for steel pipeline protection in oil and gas industries: A comprehensive review. Journal of Natural Gas Science and Engineering, 83, p. 103544, 2020/11/01/ 2020.
KEAR, B.; SKANDAN, G.; SADANGI, R. Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings. Scripta Materialia, 44, n. 8-9, p. 1703-1707, 2001.
LI, M.; SONG, Z.; GONG, M.; MO, D. et al. WC+ Co+ graphene platelet composites with improved mechanical, tribological and thermal properties. Ceramics International, 47, n. 21, p. 30852-30859, 2021.
LIU, Y.; LIU, X.; ZHANG, X.; CHEN, X. et al. Tribological properties and self-lubrication mechanism of in-situ grown graphene reinforced nickel matrix composites in ambient air. Wear, 496, p. 204308, 2022.
MARCANO, D. C.; KOSYNKIN, D. V.; BERLIN, J. M.; SINITSKII, A. et al. Improved synthesis of graphene oxide. ACS nano, 4, n. 8, p. 4806-4814, 2010.
MYALSKA, H.; LUSVARGHI, L.; BOLELLI, G.; SASSATELLI, P. et al. Tribological behavior of WC-Co HVAF-sprayed composite coatings modified by nano-sized TiC addition. Surface and Coatings Technology, 371, p. 401-416, 2019.
MYALSKA, H.; MICHALSKA, J.; MOSKAL, G.; SZYMAŃSKI, K. Effect of nano-sized TiC powder on microstructure and the corrosion resistance of WC-Co thermal spray coatings. Surface and Coatings Technology, 318, p. 270-278, 2017.
PICAS, J.; PUNSET, M.; RUPÉREZ, E.; MENARGUES, S. et al. Corrosion mechanism of HVOF thermal sprayed WC-CoCr coatings in acidic chloride media. Surface and Coatings Technology, 371, p. 378-388, 2019.
PRAKRATHI, S.; BALASUBRAMANYA, H.; KUMAR, T. A. Influence of carbon nano tube additions on coating characteristics of WC-Co/Cr3C2-NiCr on T12 substrate. Materials Today: Proceedings, 46, p. A1-A3, 2021.
QIN, X. Self-lubrication and wear-resistance mechanism of graphene-modified coatings. Ceramics International, 46, n. 10, p. 15915-15924, 2020.
RODRÍGUEZ, M.; GIL, L.; CAMERO, S.; FRÉTY, N. et al. Effects of the dispersion time on the microstructure and wear resistance of WC/Co-CNTs HVOF sprayed coatings. Surface and Coatings Technology, 258, p. 38-48, 2014.
SINGH, R. K.; KUMAR, R.; SINGH, D. P. Graphene oxide: strategies for synthesis, reduction and frontier applications. Rsc Advances, 6, n. 69, p. 64993-65011, 2016.
STEWART, D.; SHIPWAY, P.; MCCARTNEY, D. Microstructural evolution in thermally sprayed WC–Co coatings: comparison between nanocomposite and conventional starting powders. Acta Materialia, 48, n. 7, p. 1593-1604, 2000.
SU, W.; ZOU, J.; SUN, L. Effects of nano-alumina on mechanical properties and wear resistance of WC-8Co cemented carbide by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 92, p. 105337, 2020.
SUN, J.; HUANG, Z.; ZHAO, J. High-hard and high-tough WC-TiC-Co cemented carbide reinforced with graphene. Materials Today Communications, 29, p. 102841, 2021.
SUN, J.; ZHAO, J. Multi-layer graphene reinforced nano-laminated WC-Co composites. Materials Science and Engineering: A, 723, p. 1-7, 2018.
TABANDEH-KHORSHID, M.; OMRANI, E.; MENEZES, P. L.; ROHATGI, P. K. Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets. Engineering science and technology, an international journal, 19, n. 1, p. 463-469, 2016.
YANG, Q.; SENDA, T.; OHMORI, A. Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC–12% Co coatings. Wear, 254, n. 1-2, p. 23-34, 2003.
ZHANG, X.; ZHANG, J.; DING, J. Effect of the additive graphene oxide on tribological properties of WC-Co cemented carbide. International Journal of Refractory Metals and Hard Materials, 109, p. 105962, 2022.
ZHANG, X.; ZHOU, J.; LIU, C.; LI, K. et al. Effects of Ni addition on mechanical properties and corrosion behaviors of coarse-grained WC-10 (Co, Ni) cemented carbides. International Journal of Refractory Metals and Hard Materials, 80, p. 123-129, 2019.
ZHENG, C.; LIU, Y.; QIN, J.; CHEN, C. et al. Wear behavior of HVOF sprayed WC coating under water-in-oil fracturing fluid condition. Tribology International, 115, p. 28-34, 2017.