Multivariate Analysis of the content of bioative compounds in kale (Brassica oleracea)

Autores

DOI:

https://doi.org/10.53660/612.prw1709

Palavras-chave:

Antioxidant activity, Brassica oleracea, Multivariate analysis, Total phenolics

Resumo

Antioxidants are compounds associated with delayed aging and the prevention of cancer and inflammatory diseases. These substances can be lost during food processing. Therefore, this work sought to quantitatively characterize the content of bioactive compounds in kale after different treatments and to explore the data generated using principal component analysis (PCA). The analyzes of the total phenolic contents were performed by the Folin-Ciocalteu method and the antioxidant activity were performed by the DPPH and FRAP methods. The graphs of the scores showed that the total phenolics were grouped according to the part of the kale and the solvent used for the extraction, while the graph of the loading showed the influence of the heat treatment in the extraction. It is concluded that the amount of total phenolics contents and antioxidant activity varies depending on the extraction solvent, parts of the vegetable and heat treatment and that this favored its extraction.

Downloads

Não há dados estatísticos.

Referências

AGUILERA, Y.; ESTRELLA, I.; BENITEZ, V.; ESTEBAN, R. M.; MARTÍN-ABREJAS, M. A. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res. Int., v. 44, n. 3, p. 774-783, 2011.

APAK, R.; GÜÇLÜ, K.; DEMIRATA, B.; ÖZYÜREK, M.; CELIK, S. E.; BEKTASOGLU, B. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Mol., v. 12, n. 7, p. 1496-1507, 2007.

ARBOS, K. A.; FREITAS, R. J. S.; STERTZ, S. C.; DORNAS M. F. Antioxidant activity and total phenolic content in organic and conventional vegetables. Cienc. Tecnol. Aliment. (Campinas, Braz.), v. 30, n. 2, p.501-506, 2010.

BALASUNDRAM, N.; SUNDRAM, K.; SAMMAN, S. Phenolic compounds in plants and agri-industrialby-products: Antioxidant activity, occurrence, and potential uses. Food Chem., v. 99, n. 1, p. 191–203, 2006.

BARBA, F. J.; ZHENZHOU, Z.; MOHAMED, Z.; ANDERSON, K.; SANTANA; A. S.; ORLIEN, V. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends Food Sci Technol., v. 49, n. 1, p. 96-109, 2016.

BENZIE, I. F. F.; STRAIN. J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., v. 239, n. 1, p. 70-76, 1996.

BRENNA, O. V.; PAGLIARINI, E. Multivariate analyses of antioxidant power and polyphenolic composition in red wines. J. Agric. Food Chem., v. 49, n. 10, p. 4841-4844, 2011.

COSTA, A. S. G.; ALVES, R. C.; VINHA, A. F.; BARREIRA, S. V. P.; NUNES, M. A.; CUNHA, L. M.; OLIVEIRA, M. B. P. P. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind Crops Prod., v. 53, p. 350-357, 2014.

DOGRA, V.; AHUJA, P. S.; SREENIVASULU, Y. Change in protein content during seed germination of a high-altitude plant Podophyllum hexandrum Royle. J Proteomics, v.14, n. 78, p. 26-38, 2013.

EFFERTH, T.; KOCH, E. Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy. Curr. Drug Targets, v. 12, n. 1, p. 122-132, 2011.

EMBRAPA. Scientific Methodology: Determination of Total Antioxidant Activity in Fruits by the Iron Reduction Method (FRAP). Fortaleza, Brazil, 2006.

EMBRAPA. Scientific Methodology: Determination of Total Antioxidant Activity in Fruits by Free Radical Capture DPPH. Fortaleza, Brazil, 2007.

ESTEVE-TURRILLASA, F. A.; PASTOR, A. Passive Air Sampling. Compr. Anal. Chem., v. 73, p. 203-232, 2016.

FABBRI, A. D. T.; CROSBY, G. A. A review of the impact of preparation and cooking on the nutritionalquality of vegetables and legumes. Int J Gastron Food Sci., v. 3, p. 2-11, 2016.

GREGORY, J. F. Vitaminas. In: S. Damoradan, O. R. Fennema; K. L. Parking (Ed.) Química de Alimentos de Fennema (Capítulo 7, p. 345-409), Artmed, Porto Alegre, Brazil, 2010.

GRUZ, A. P. G.; SOUSA, C. G. S.; TORRES, A. G.; FREITAS, S. P.; CABRA, L. M. C. Recovery of bioactive compounds from grape pomace. Rev. Bras. Frutic., v. 35, n. 4, p. 147-1157, 2013.

GUTIÉRREZ-URIBE, J. A.; ROMO-LOPEZ, I.; SERNA-SALDÍVAR, S. O. Phenolic composition and mammary cancer cell inhibition of extracts of whole cowpeas (Vigna unguiculata) and its anatomical parts. JFF, v. 3, n. 4, p. 290-297, 2011.

HUSSON, R.; LE, S.; PAGÈS, J. Exploratory Multivariate Analysis by Example Using R. Chapman and Hall/CRC, New York, 2017.

INSTITUTO ADOLFO LUTZ. Analytical standards of the Adolfo Lutz Institute - Chemical and physical methods for food analysis. São Paulo, Brazil, 2005.

JIN, S.; YANG, B.; CHENG, Y.; TAN, J.; KUANG, H.; FU, Y.; BAI, X.; XIE, H.; GAO, Y.; LV, C.; EFFERTH, T. Improvement of resveratrol production from waste residue of grape seed by biotransformation of edible immobilized Aspergillus oryzae cells and negative pressure cavitation bioreactor using biphasic ionic liquid aqueous system pretreatment. Food Bioprod. Process., v. 102, p. 177-185, 2017.

KHAW, K. Y.; PARAT, M. O.; SHAW, P. N.; FALCONER, A. R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Mol., v. 22, n. 7, p.1186-1194, 2017.

KO, M.; CHEEIGH, C.; CHING, M. Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem., v. 143, p. 147-155, 2014.

LIMMONGKON, A.; JANHOM, P.; AMTHONG, A. Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut Sprouts. Asian Pac. J. Trop. Biomed., v. 7, n. 4, p. 332-338, 2017.

LOBO, V.; PATIL, A.; PHATAK, A.; CHANDRA, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., v. 4, n. 8, p. 118-26, 2010.

MELO, E. A.; MACIEL, M. I. S.; LIMA, V. L. A. G.; SANTANA, A. P. M. Antioxidant capacity of vegetables subjected to heat treatment. Nutrire, v. 34, n. 1, p. 85-95, 2009.

MOHANKUMAR, J. B.; UTHIRA, L.; SU, M. Total phenolic content of organic and conventional green leafy vegetables. J. Nutr. Health, v. 2, n. 1, p.1-6, 2018.

NOGUEIRA, A.; SANTOS, L. D.; WIECHETECK, F. V. B.; GUYOT, S.; WOSIACKI, G. Effect of processing on the content of phenolic compounds in apple juice. UEPG Ci. Exatas Terra, Ci. Agr. Eng., v. 9, n. 3, p. 7-14, 2003.

OBENG, E.; KPODO, F. M.; TETTEY, C. O.; ESSUMAN, E. K.; ADZINYO, O. A. Antioxidant, total phenols and proximate constituents of four tropical leafy vegetables. Sci. Afr., v. 7, ID e00227, p. 1-7, 2020.

OLIVEIRA, G. L. S. Determination of the antioxidant capacity of natural products in vitro by the DPPH• method: review study. Rev. Bras. Plant. Med., v. 17, n. 1, p. 36-44, 2015.

PINTO, N.; CARVALHO, V.; CORRÊA, A.; RIOS, A. Evaluation of antinutritional factors in taioba leaves. Ciênc. agrotec., v. 25, n. 3, p. 601-604, 2001.

PRIOR, R. L.; WU, X.; SCHAICH, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem., v. 53, n. 10, p. 4290-302, 2005.

ROCHA, M. E. L.; COUTINHO, P. W. R.; ABADE, M. T. R.; INAGAKI, A. M.; CADORIN, D. A.; HOEPERS, L. M. L. Morphophysiology of kale plants under liquid humus concentrations. Rev. Cienc. Agrovet., v. 18, n. 4, p. 438-443, 2019.

SASIDHARAN, S.; CHEN, Y.; SARAVANAN, D.; SUNDRAM, K. M.; LATHA, L. Y. Extraction, isolation and characterization of bioactive compounds from plant’s extracts. Afr. J. Tradit. Complement. Altern. Med., v. 8, n. 1, p1-10, 2011.

SHARAF, M. A.; ILLMAN, D. L.; KOWALSKI B. R. Chemometrics, John Wiley Sons. New York, 1986.

SEMA, D.; GÜLAY, Ö.; ASLI, N. A; SEDA. U.; ESRA, Ç.; REŞAT, A. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal., v. 209, ID 114477, 2022.

SIES, H. Strategies of antioxidant defence. Review. Eur. J. Chem., v. 215, n. 2, p. 213- 219, 1993.

TIRZITIS G.; BARTOSZ, G. Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim. Pol., v. 57, p. 139-143, 2010.

TIVERON, AP (2010). Antioxidant activity and phenolic composition of vegetables consumed in Brazil. BSc Thesis, São Paulo, Brazil. Available in: doi:10.11606/D.11.2010.tde-20102010-101541. Acessed on: 13 fev. 2023.

TSAO, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, v. 2, p. 1231-1246, 2010.

ZHANG, Y. J.; GAN, R. Y.; LI, S.; ZHOU, Y.; LI, A. N.; XU, D. P.; LI, H. B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Mol., v. 20, n. 12, p. 21138-21156, 2015.

Downloads

Publicado

2023-06-16

Como Citar

da Silva, A. S. L., Benevides, C. M. de J., da Silva, H. B. M., Silva, M. V. L. ., Montes, S. de S. ., Souza, A. C. dos S. ., & Bezerra, M. de A. . (2023). Multivariate Analysis of the content of bioative compounds in kale (Brassica oleracea) . Peer Review, 5(13), 254–270. https://doi.org/10.53660/612.prw1709

Edição

Seção

Articles