Microestrutura e propriedades tribológicas dos compósitos de SiC-10 wt% Co fabricados por Spark Plasma Sintering (SPS)

Autores

  • Heytor Vitor Souza Bezerra de Azevedo Instituto Federal do Rio grande do norte, Brasil
  • Matheus Duarte da Silva Instituto Federal do Rio grande do norte, Brasil
  • Luis Matheus Fernades de Morais Universidade Federal do Rio Grande do Norte
  • Paulo Sérgio Paraguai Santana Universidade Federal do Rio Grande do Norte
  • Danilo de Souza Instituto Federal do Rio grande do norte, Brasil
  • Wagner Lopes Torquato Instituto Federal do Rio grande do norte, Brasil
  • Francine Alves Da Costa Universidade Federal do Rio Grande do Norte/PPGEM, Brasil
  • Uílame Umbelino Gomes Universidade Federal do Rio Grande do Norte/PPGCEM, Brasil

DOI:

https://doi.org/10.53660/PRW-2001-3710

Palavras-chave:

SiC-Co Composites, Spark Plasma Sintering (SPS), Tribological properties

Resumo

Neste trabalho, compósitos de SiC-10 wt% Co foram preparados por moagem de alta energia e consolidados por SPS a 1650 °C por 5 min. A micorestutura e propriedades tribológicas foram estudadas. A sinterização assistida por fase líquida proporcionou que os grãos de SiC fossem interconectados e envolvidos pelo aglutinante Co. O coeficiente de atrito médio dos compósitos alcançou valores de 0.13 e 0.17 para as cargas aplicadas 10 N e 15 N, respectivamente. O volume e a taxa de desgaste específica dos compósitos apresentaram aumento significativo com o aumento da carga de desgaste. Os compósitos mostraram-se atrativos para materiais com aplicações tribológicas.

Downloads

Não há dados estatísticos.

Referências

AKBARPOUR, M. R. et al. Hardness, wear and friction characteristics of nanostructured Cu-SiC nanocomposites fabricated by powder metallurgy route. Materials today communications, v. 18, p. 25-31, 2019.

ANDERSSON, Peter; BLOMBERG, Adam. Instability in the tribochemical wear of silicon carbide in unlubricated sliding contacts. Wear, v. 174, n. 1-2, p. 1-7, 1994.

ARCHARD, JeFoa. Contact and rubbing of flat surfaces. Journal of applied physics, v. 24, n. 8, p. 981-988, 1953.

AZEVÊDO, Heytor VSB et al. Effect of High-Energy Milling and Sintering Temperature on the Properties of Al 2 O 3-WC-Co Composites. Journal of Materials Engineering and Performance, v. 30, p. 1504-1512, 2021.

AZEVÊDO, Heytor VSB et al. Microstructure and mechanical properties of Al2O3-WC-Co composites obtained by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, v. 94, p. 105408, 2021.

CAI, Huang et al. Effects of micro/nano CeO2 on the microstructure and properties of WC-10Co cemented carbides. International Journal of Refractory Metals and Hard Materials, v. 95, p. 105432, 2021.

GODET, Maurice. Third-bodies in tribology. Wear, v. 136, n. 1, p. 29-45, 1990.

GALATANU, Magdalena et al. Direct sintering of SiC–W composites with enhanced thermal conductivity. Fusion Engineering and Design, v. 88, n. 9-10, p. 2598-2602, 2013.

LUO, Yongming et al. Fabrication and mechanical evaluation of SiC–TiC nanocomposites by SPS. Materials letters, v. 58, n. 1-2, p. 150-153, 2004.

MURTHY, V. S. R. et al. Influence of humidity and doping elements on the friction and wear of SiC in unlubricated sliding. Tribology international, v. 37, n. 5, p. 353-364, 2004.

PROSVIRYAKOV, A. S. SiC content effect on the properties of Cu–SiC composites produced by mechanical alloying. Journal of Alloys and Compounds, v. 632, p. 707-710, 2015.

PAN, Yi et al. Infiltration of SiC preforms with iron silicide melts: microstructures and properties. Materials Science and Engineering: A, v. 359, n. 1-2, p. 343-349, 2003.

SHARMA, Sandan Kumar; KUMAR, B. Venkata Manoj; KIM, Young-Wook. Effect of WC addition on sliding wear behavior of SiC ceramics. Ceramics International, v. 41, n. 3, p. 3427-3437, 2015.

SHARMA, Sandan Kumar et al. Room and high temperature reciprocated sliding wear behavior of SiC-WC composites. Ceramics International, v. 43, n. 18, p. 16827-16834, 2017.

SU, Qingde et al. Effect of the additive VC on tribological properties of WC-Al2O3 composites. International Journal of Refractory Metals and Hard Materials, v. 75, p. 111-117, 2018.

TOKITA, Masao. Trends in advanced SPS spark plasma sintering systems and technology functionally gradient materials and unique synthetic processing methods from next generation of powder technology. Journal of the Society of Powder Technology, Japan, v. 30, n. 11, p. 790-804, 1993.

ZHANG, Wei; YAMASHITA, Seiji; KITA, Hideki. Progress in tribological research of SiC ceramics in unlubricated sliding-A review. Materials & design, v. 190, p. 108528, 2020.

K.H. Zum Gahr, R. Blattner, D.H. Hwang, K. Pöhlmann, Wear 250–251 (2001) 299-310.

ZHANG, Shaoyang; WANG, Fuping. Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with different SiC particles. Journal of Materials Processing Technology, v. 182, n. 1-3, p. 122-127, 2007.

Downloads

Publicado

2024-03-27

Como Citar

Azevedo, H. V. S. B. de ., Silva, M. D. da ., Fernades de Morais , L. M. ., Paraguai Santana, P. S. ., de Souza, D., Lopes Torquato, W., Alves Da Costa, F., & Umbelino Gomes, U. (2024). Microestrutura e propriedades tribológicas dos compósitos de SiC-10 wt% Co fabricados por Spark Plasma Sintering (SPS) . Peer Review, 6(6), 248–257. https://doi.org/10.53660/PRW-2001-3710

Edição

Seção

Articles