Production of nanocomposite based on PETG, manufactured by 3D printing, to combat the Sars-Cov-2 virus
DOI:
https://doi.org/10.53660/PRW-1957-3610Resumo
With the collapse of the COVID-19 pandemic, it was necessary to explore new materials with resistance to SARS- CoV-2 of lower cost and effective and easy production methods, such as 3D printing. The objective was to produce and characterize filaments for 3D printing using PETG and copper nanoparticles (NCu) aiming at obtaining a virucidal surface. Nanocomposites were made with the addition of 0.75% and 1% of NCu and pure PETG. After printing, mechanical tests of nanoindentation, thermogravimetric analyses (TGA), digital optical microscopies and Fourier transform infrared spectroscopies (FTIR) were performed. The results showed a 48% increase in the elastic modulus for the 0.75% and 1% nanocomposites compared to pure PETG. In the TGA, the results were significant for the nanocomposites with the addition of 1% of NCu compared to pure PETG. In the chemical composition by FTIR spectrum, there were no significant changes.
Downloads
Referências
Agência Nacional de Vigilância Sanitária – Anvisa. Nota técnica GVIMS/GGTES/ANVISA Nº 05/2020.
ANATOL LOCKER.; ALL3DP, https://all3dp.com/1/petg-filament-3d-printing/. Acessado em dezembro de 2017.
ASTM, Standard testsmethod for tensilepropertiesofplastics, United States, ASTM International, 2010.
BHALODI, D.; ZALAVADIYA. K: Influence of temperature on polymer parts manufactured by fused deposition modeling process. J Braz Soc Mech Sci 2019; 41:113. https://doi.org/10.1007/s40430-019-1616-z.
BITENCOURT, S.S.; BATISTA, K.C.; ZATTERA, A.J.; et al., ―Desenvolvimento de biocompósitos de poli (L-ácido láctico) (PLLA) com serragem de madeira‖, Matéria (R.J.), v.22, n.4, Ago. 2017.
CHIENG, B.W.; IBRAHIM, N.A.; THEN, Y.Y.; et al., ―Epoxidized vegetable oils plasticized poly (lactic acid) biocomposites: mechanical, thermal and morphology properties‖, Molecules, v.19, n.10, pp. 16024-16038, Oct. 2014.
Compston P. SOMMACAL S.; MATSCHINSKI, A.; DRECHSLER, K.; COMPSTON, P.
Characterisation of void and fiber distribution in 3D printed carbon-fiber/PEEK using X-ray computed tomography. Compos Part A Appl Sci Manuf 2021; 149:106487. https:// doi.org/10.1016/j.compositesa.2021.106487.
DE PAOLI, M. A.; Degradação e Estabilizaçãode Polímeros, Chemkeis, 2ª ed, 2008. Disponível http://www.chemkeys.com/blog/wpcontent/uploads/2008/09/polimeros.pdf. Acesso em 23 de dezembro de 2017.
E. GUZMAN, J.; CUGNONI, T.; GMUR, P.; BONHOTE, A.; SCHORDERET. Sobrevivência de sensores de filme PVDF integrados para condições de envelhecimento acelerado em estruturas aeronáuticas/ aeroespaciais, Smart Mater. Estrutura. 22 (6) (junho de 2013), https://doi.org/ 10.1088/0964-1726/22/6/065020.
GURRALA, PK.; REGALLA, SP, Part strength evolution with bonding between filaments in fused deposition modelling. Virtual Phys Prototyp 2014; 9:141 e9. https://doi.org/10.1080/ 17452759.2014.913400.slic3r.org/
HUANG B, Singamneni S. Raster angle mechanics in fused deposition modelling. J Compos Mater 2014; 49:363e83. https://doi.org/10.1177/0021998313519153.
JAIMES, JAVIER A.; ANDRÉ.; NICOLE, M.; MILLET, JEAN K.; WHITTAKER, Gary R. Structural modelingof 2019-novel coronavirus (nCoV) spikeproteinreveals a proteolytically-sensitiveactivation loop as adistinguishingfeaturecomparedto SARS- CoVandrelated SARS-like coronaviruses. Biorxiv, p. 1-6, 2020.
MARCH 11. World Health Organization. Diretor - General'sopeningremar ksatthemedia briefing on COVID -19 -11. 2020
ORGANIZAÇÃO PAN-AMERICANA DA SAÚDE. COVID-19 (doença causada pelo novo coronavírus). Brasília, DF, 2020.
PASZKIEWICZ, S., SZYMCZYK, A., PAWLIKOWSKA, D., et al., ― Synthesis and
characterization of poly (ethylene terephthalate-co-1,4-cyclohexanedimethylene terephtlatate)- block-poly (tetramethylene oxide) copolymers‖, RSC Advances, v.7, n.66, pp. 41745-41754, Aug. 2017.
POLYCHRONOPOULOS, ND.; VLACHOPOULOS J.; The role of heating and cooling in viscous sintering of pairs of spheres and pairs of cylinders. Rapid Prototyp J 2020; 26:719 e 26. https:// doi.org/10.1108/RPJ-06-2019-0162.
RAHIM TNAT.; ABDULLAH, AM.; Md Akil, H.; Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym Rev 2019;5 9:589e624. https://doi.org/10.1080/ 15583724.2019.1597883.
SPOERK, M.; ARBEITER, F.; CAJNER, H.; SAPKOTA, J.; HOLZER, C.; Parametric
optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly (lactic acid). J Appl Polym Sci 2017; 134:45401. https://doi.org/10.1002/app.45401
TAO, Y.; PAM, L.; LIO, D.; LIO, P.; A case study: mechanical modeling optimization of cellular structure fabricated using wood flour-filled polylactic acid composites with fused deposition modeling. Compos Struct 2019; 216:360e5. https://doi.org/ 10.1016/j.compstruct.2019.03.010.
V.S GIITA SILVERAJAD; N. A. IBRAHIM; W. MD ZIN WAN YUNUS; H.A. HASSAN, AND C.B, WOEI; “A comparative study on the mechanical, thermal and morphological characterization of poly (lactic acid)/epoxidized palm oil blend,” Int. J. Mol. Sci., vol. 13, no. 5, pp. 5878–5898, 2012.
VAES, D.; VAN, PUYVELDE, P.; Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog Polym Sci 2021; 118: 101411. https://doi.org/10.1016/ j. progpolymsci.2021.101411.
TEHRANI, M.; Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit Manuf 2020; 31: 100962. https://doi.org/ 10.1016/j.addma.2019.100962.