Potencial da suplementação alimentar de caprinos com potássio, sódio e silício via pó de rocha na prevenção e controle da mastite subclínica: uma análise bioinformática
Resumo
A mastite caprina é um problema comum, mesmo em criações bem manejadas, e a implementação de medidas de controle é essencial para garantir a viabilidade desse tipo de produção. Nesse contexto, este estudo tem por objetivo avaliar as possíveis contribuições dos componentes minerais do pó de rocha, no controle e prevenção da mastite subclínica em caprinos. Foi realizada análise bioinformática, utilizando a base de dados Search Tool for Interactions of Chemicals STITCH. Para isso, os elementos potássio, sódio e silício, juntamente com as proteínas ica (A, B, C, D), foram inseridos na plataforma para a construção da rede de interação proteica. Os resultados indicaram que o potássio atua na enzima Guanilato quinase, relacionada à formação de biofilmes, e da proteína murB, associada ao crescimento e desenvolvimento do Staphylococcus caprae. No entanto, este mineral demonstrou potencial em desfavorecer o crescimento bacteriano, inibindo a proteína asd. O sódio mostrou-se como fator inibitório para a formação de biofilmes via proteína tmk. O silício, por sua vez, pode colaborar com atenuação do processo infecioso por intermédio das moléculas de sódio e potássio, reduzindo níveis de glicose que desfavorece a formação de biofilmes e ainda atuando em proteínas como a pgi, que se inibida pode prejudicar o desenvolvimento do S. caprae.
Downloads
Referências
ABEBE, R et al. Bovine mastitis: prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC veterinary research, v. 12, n. 1, p. 1-11, 2016.
AHN, Yong-Yeol et al. Identificação baseada em análise de redes metabólicas de alvos de medicamentos antimicrobianos em agentes de bioterrorismo categoria A. PLoS Um , v. 1, pág. e85195, 2014.
ALNAKIP, M.. E et al. The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. Journal of veterinary medicine, v. 2014, 2014.
BARANOWSKI, S. Wplyw niedoboru sodu w pokarmie na czynnosc nerek i gruczolu mlekowego. Szczecin Wyzsza Szk Roln Rozpr, 1972.
BARBOSA, C. P et al. Relação entre contagem de células somáticas (CCS) e os resultados do “California Mastitis Test”(CMT), no diagnóstico de mastite bovina. Bioscience Journal, v. 18, n. 1, p. 93-102, 2002.
BARKEMA, H. W.; SCHUKKEN, Y. H.; ZADOKS, R. N. Invited review: The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. Journal of dairy science, v. 89, n. 6, p. 1877-1895, 2006.
BARKEMA, HW et al. Práticas de manejo associadas a contagens baixas, médias e altas de células somáticas no leite a granel. Revista de ciência láctea , v. 81, n. 7, pág. 1917-1927, 1998..
BERCHIELLI, T. T.; PIRES, A. V.; OLIVEIRA, S. G. Nutrição de Ruminantes. Jaboticabal: Funep, 2006.
BRONSON, J. J et al. Discovery of the first antibacterial small molecule inhibitors of MurB. Bioorganic & medicinal chemistry letters, v. 13, n. 5, p. 873-875, 2003.
BRUNO, D. R. Mastitis, mammary gland immunity, and nutrition. In: Mid-South Ruminant Nutrition Conference. 2010.
CAO, Min-Jie et al. Purification of a novel serine proteinase inhibitor from the skeletal muscle of white croaker (Argyrosomus argentatus). Biochemical and biophysical research communications, v. 272, n. 2, p. 485-489, 2000.
CERCA, N.; BROOKS, J. L.; JEFFERSON, K. K. Regulation of the intercellular adhesin locus regulator (icaR) by SarA, σB, and IcaR in Staphylococcus aureus. Journal of bacteriology, v. 190, n. 19, p. 6530-6533, 2008.
CHAIEB, K. et al. XTT assay for evaluating the effect of alcohols, hydrogen peroxide and benzalkonium chloride on biofilm formation of Staphylococcus epidermidis. Microbial Pathogenesis, v. 50, n. 1, p. 1-5, 2011.
CHAPUT, M. et al. The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature, v. 332, n. 6163, p. 454-455, 1988.
CHEN, M. W. et al. Substrate channel flexibility in Pseudomonas aeruginosa MurB accommodates two distinct substrates. Plos one, v. 8, n. 6, p. e66936, 2013.
CHENOWETH, D. M. Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Methods for Prokaryotic and Eukaryotic Systems. Academic Press, 2020.
CONRAD, J. H. et al. Minerais para ruminantes em pastejo em regiões tropicais. 1985.
CONTRERAS, A. et al. Mastitis in small ruminants. Small Ruminant Research, v. 68, n. 1-2, p. 145-153, 2007.
COSTA, C. R. de M. et al. Mastite caprina: etiologia e epidemiologia: revisão de literatura. Pubvet, v. 7, p. 619-706, 2013.
DEVRIESE, L. A. et al. Staphylococcus gallinarum and Staphylococcus caprae, two new species from animals. International Journal of Systematic and Evolutionary Microbiology, v. 33, n. 3, p. 480-486, 1983.
DHALLA, A. M. et al. Steady-state kinetic mechanism of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry, v. 34, n. 16, p. 5390-5402, 1995.
DONLAN, R. M. Biofilms: microbial life on surfaces. Emerging infectious diseases, v. 8, n. 9, p. 881, 2002.
ENIYAN, K. et al. Crystal structure of UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) from Mycobacterium tuberculosis. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, v. 1866, n. 3, p. 397-406, 2018.
FAIK, P. et al. Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3′ sequences. Nature, v. 332, n. 6163, p. 455-456, 1988.
FAUTEUX, F. et al. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology letters, v. 249, n. 1, p. 1-6, 2005.
FEOKTISTOVA, Natalya et al. Silicon-containing minerals as additives for farm animals. In: BIO Web of Conferences. EDP Sciences, 2022. p. 01003.
FERREIRA, J. C. Proteínas moonlighting e sua relação com a patogenicidade da bactéria Xanthomonas citri subsp. citri, causadora do cancro cítrico. 2022.
HARB, O. S.; KWAIK, Yousef Abu. Identification of the aspartate-β-semialdehyde dehydrogenase gene of Legionella pneumophila and characterization of a null mutant. Infection and immunity, v. 66, n. 5, p. 1898-1903, 1998.
HARE, R. S. et al. Genetic footprinting in bacteria. Journal of Bacteriology, v. 183, n. 5, p. 1694-1706, 2001.
HEILMANN, C. Adhesion mechanisms of staphylococci. Bacterial Adhesion: Chemistry, Biology and Physics, p. 105-123, 2011.
HESSE, J. E. et al. Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and the Ca2+-ATPase of sarcoplasmic reticulum. Proceedings of the National Academy of Sciences, v. 81, n. 15, p. 4746-4750, 1984.
HU, Hailong et al. Silicon dioxide nanoparticles induce insulin resistance through endoplasmic reticulum stress and generation of reactive oxygen species. Particle and Fibre Toxicology, v. 16, n. 1, p. 1-18, 2019.
HUMPHRIES, J. et al. Species-independent attraction to biofilms through electrical signaling. Cell, v. 168, n. 1, p. 200-209. e12, 2017..
ISLAM, M. R. et al. Identification and antibiotic sensitivity of the causative organisms of subclinical mastitis in sheep and goats. Pak. Vet. J, v. 32, n. 2, p. 179-182, 2012.
JAIN, A; AGARWAL, A. Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. Journal of microbiological methods, v. 76, n. 1, p. 88-92, 2009.
KHALIL, M. A.; SONBOL, F. I. Investigation of biofilm formation on contact eye lenses caused by methicillin resistant Staphylococcus aureus. Nigerian Journal of Clinical Practice, v. 17, n. 6, p. 776-784, 2014.
KHAN, N. et al. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. Journal of Biological Chemistry, v. 294, n. 31, p. 11920-11933, 2019.
LAIMINS, L.A.; ROADS, D.B.; EPSTEIN, W. Controle osmótico da expressão do operon kdp em Escherichia coli. In. Anais da Academia Nacional de Ciências, v. 78, n. 1, pág. 464-468, 1981.
LEÃO, J. C. et al. Uma análise temporal da rede de colaboração científica do IFNMG: 10 anos de iniciação científica e orientação acadêmica. In. Anais dos Simpósios de Informática do IFNMG - Campus Januária, v. 11, p. 7, 2019.
LEE, Jung‐Su et al. Biofilm formation of Staphylococcus aureus on various surfaces and their resistance to chlorine sanitizer. Journal of food science, v. 80, n. 10, p. M2279-M2286, 2015.
LEIRA, M. H. et al. Fatores que alteram a produção e a qualidade do leite: Revisão. Pubvet, v. 12, p. 172, 2018.
LIBERA, K. et al. The association between selected dietary minerals and mastitis in dairy cows—A review. Animals, v. 11, n. 8, p. 2330, 2021.
LIU, Y; ZHANG, J; JI, Y. Environmental factors modulate biofilm formation by Staphylococcus aureus. Science Progress, v. 103, n. 1, p. 0036850419898659, 2020.
MADIGAN, M. T. et al. Brock Biology of Microorganisms. 15th Global Edition. Boston, US: Benjamin Cummins, v. 1, p. 1391-1407, 2018.
MAHLANGU, P; MAINA, N; KAGIRA, J. Prevalence, risk factors, and antibiogram of bacteria isolated from milk of goats with subclinical mastitis in Thika East Subcounty, Kenya. Journal of Veterinary Medicine, v. 2018, 2018.
MANNING, D. AC; THEODORO, Suzi Huff. Enabling food security through use of local rocks and minerals. The Extractive Industries and Society, v. 7, n. 2, p. 480-487, 2020.
MARINHEIRO, D. et al. Silica-Based Nanomaterials for Diabetes Mellitus Treatment. Bioengineering, v. 10, n. 1, p. 40, 2022.
MARSCHNER, H. (Ed.). Marschner's mineral nutrition of higher plants. Academic press, 2011.
MCDOWELL, L. R. Minerals For Ruminants Under Pasture in Tropical Regions, Empathizing Brazil. São Paulo, Brazil: UNESP, 1999.
MCDOWELL, L. R. et al. Minerals in animal and human nutrition. Academic Press Inc., 1992.
MIYAKAWA, T. et al. Cell wall peptidoglycan mutants of Escherichia coli K-12: existence of two clusters of genes, mra and mrb, for cell wall peptidoglycan biosynthesis. Journal of Bacteriology, v. 112, n. 2, p. 950-958, 1972.
NOVAC, C. S., A, S. The Impact of mastitis on the biochemical parameters, oxidative and nitrosative stress markers in goat’s milk: A review. Pathogens, v. 9, n. 11, p. 882, 2020.
O'GARA, J. P. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS microbiology letters, v. 270, n. 2, p. 179-188, 2007.
OLIVEIRA, F; FRANÇA, A; CERCA, N. Staphylococcus epidermidis is largely dependent on iron availability to form biofilms. International Journal of Medical Microbiology, v. 307, n. 8, p. 552-563, 2017.
PILON, L. E. Características genotípicas de Staphylococcus coagulase-negativos e taxas de cura da mastite ovina. 2016.
PRINDLE, A. et al. Ion channels enable electrical communication in bacterial communities. nature, v. 527, n. 7576, p. 59-63, 2015.
SANCHEZ, D. C. C. Perfil bioquímico dos soros lácteo e sanguíneo de cabras com mastite de ocorrência natural. 2015.
SILVA, V. A. et al. Mineralogical analysis of rock dust for remineralization of soil intended for pasture. Revista Ibero-Americana de Ciências Ambientais, v. 13, n. 2, p. 1-13, 2022.
SINGH, R; et al. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of antimicrobial chemotherapy, v. 65, n. 9, p. 1955-1958, 2010.
SINGH, V. K. et al. An insight into the significance of the DnaK heat shock system in Staphylococcus aureus. International Journal of Medical Microbiology, v. 302, n. 6, p. 242-252, 2012.
SPURIA, L. et al. Microbial agents in macroscopically healthy mammary gland tissues of small ruminants. PeerJ, v. 5, p. e3994, 2017.
SWOBODA, P.; DÖRING, T. F.; HAMER, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Science of The Total Environment, v. 807, p. 150976, 2022.
TIWARI, M.; PANWAR, Shruti; TIWARI, Vishvanath. Assessment of potassium ion channel during electric signalling in biofilm formation of Acinetobacter baumannii for finding antibiofilm molecule. Heliyon, v. 9, n. 1, 2023.
VÁZQUEZ-SÁNCHEZ, D; HABIMANA, O; HOLCK, A. Impact of food-related environmental factors on the adherence and biofilm formation of natural Staphylococcus aureus isolates. Current microbiology, v. 66, p. 110-121, 2013.
VERT, M. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, v. 84, n. 2, p. 377-410, 2012.
WALDERHAUG, M. O.; DOSCH, D. C.; EPSTEIN, W. Potassium transport in bacteria. In: Ion transport in prokaryotes. Academic Press, 1987. p. 85-130.
WANGWIWATSIN, A. et al. Toward novel treatment against filariasis: Insight into genome-wide co-evolutionary analysis of filarial nematodes and Wolbachia. Frontiers in Microbiology, v. 14, p. 1052352, 2023.
WANG, Min et al. Role of silicon on plant–pathogen interactions. Frontiers in plant science, v. 8, p. 701, 2017.
WATANABE, H. et al. Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. Journal of Biological Chemistry, v. 266, n. 20, p. 13442-13448, 1991.
WILLIAMS, F. E. et al. Antibacterial action of functional silicon dioxide: an investigation of the attachment and separation of bacteria. Environmental Technology, 2018.
ZHANG, T. et al. Multi-omics analysis reveals genes and metabolites involved in Bifidobacterium pseudocatenulatum biofilm formation. Frontiers in Microbiology, v. 14, 2023.
ZIMARO, Tamara et al. Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics. BMC microbiology, v. 13, p. 1-14, 2013.