Avanços no tratamento de feridas: Parte 2

Autores

DOI:

https://doi.org/10.53660/PRW-1870-3517

Palavras-chave:

Nanopartículas, Terapia hiperbárica, Ozonioterapia, Ultrasson terapêutico, Reparação tecidual

Resumo

Os tratamentos de feridas utilizando nanopartículas, terapia hiperbárica, ozônio e ultrassom são avanços marcantes na medicina contemporânea, oferecendo soluções inovadoras para pacientes com feridas de difícil cicatrização. As nanopartículas, devido às suas propriedades únicas, são amplamente investigadas na dermatologia, destacando-se por suas capacidades terapêuticas promissoras. A terapia hiperbárica, por sua vez, tem demonstrado eficácia no tratamento de feridas crônicas, agindo diretamente na melhoria da perfusão tecidual e na promoção da cicatrização. Em contrapartida, a ozonioterapia e o ultrassom se destacam pela sua ação antimicrobiana e anti-inflamatória, respectivamente, oferecendo potenciais benefícios para a saúde dos pacientes com feridas. Apesar dos desafios e da necessidade de mais pesquisas para compreender totalmente o alcance terapêutico dessas modalidades, é inegável que representam avanços significativos na busca por tratamentos mais eficazes para feridas, com potencial para transformar os cuidados médicos nessa área e melhorar a qualidade de vida dos pacientes.

Downloads

Não há dados estatísticos.

Referências

ALKAHTANI S. A. et al. Ultrasound-based Techniques as Alternative Treatments for Chronic Wounds: A Comprehensive Review of Clinical Applications. Cureus, v. 9, n. 12, p. e1952, 2017.

AL-WAILI N. S.; BUTLER G. J. Effects of Hyperbaric Oxygen on Inflammatory Response to Wound and Trauma: Possible Mechanism of Action. The Scientific World Journal, v. 6, p. 425–441, 2006.

AMARAL, B.P. et al. Hyperbaric oxygen therapy in wound healing in mice. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 73, n. 2, p. 361-366, 2021.

CHANG Y.-J. R.; PERRY J.; CROSS K. Low-Frequency Ultrasound Debridement in Chronic Wound Healing: A Systematic Review of Current Evidence. Plastic Surgery, v. 25, n. 1, p. 21–26, 2017.

CHEN, H. et al. Removal of copper ions by a biosorbent. Cinnamomum camphora leaves powder, v. 177, p. 228–p236, 2009.

CHEN, J. et al. Composite of silver nanoparticles and photosensitizer leads to mutual enhancement of antimicrobial efficacy and promotes wound healing. Chemical Engineering Journal, v. 374, p. 1373– 1381, 2019.

DeLOUISE, L. A. Applications of Nanotechnology in Dermatology. Journal of Investigative Dermatology, v. 132, n. 302, p. 964-975, 2012.

DIN, M. I.; REHAN, R. Synthesis, Characterization, and Applications of Copper Nanoparticles. Analytical Letters, v. 50, n. 1, p. 50–62, 2017.

DOWLING, A., et al. Nanoscience and nanotechnologies: opportunities and uncertainties. A Report by The Royal Society & The Royal Academy of Engineering, London. 2004.

EGGLETON P.; BISHOP A.; SMERDON G. Safety and efficacy of hyperbaric oxygen therapy in chronic wound management: current evidence. Chronic Wound Care Management and Research, v. 2, p. 81-93, 2015.

FERREIRA S. et al. Ozonioterapia no controle da infecção em cirurgia oral. Revista Odontológica de Araçatuba, v. 34, n. 1, p. 36–38, 2013.

GAYON-AMARO S. G.; FLORES-COLIN E. Ozone applications in veterinary oncology. Journal of Ozone Therapy, v. 3, n. 4, p. 18-19, 2019.

GOPPE, N. V et al. Quantitative Determination of Skin Penetration of PEG-Coated CdSe Quantum Dots in Dermabraded but not Intact SKH-1 Hairless Mouse Skin. Toxicological Science, v. 111, n. 1, p. 37-48, 2009.

GRASSESCHI, D.; SANTOS, D. P. Plasmonic nanomaterials: Part I. Fundamentals of nanoparticle spectroscopy and its relation with the sers effect. Química Nova, v. 43, n. 10, p. 1463-1481, 2020.

GRASSI, L. T.; GRASSI, V. M. T. Silver nanoparticle action on wound healing: a systematic review. Brazilian Journal of Development, v. 7, n. 6, p. 58109-58131, 2021.

HANKS J.; SPODNICK G. Wound Healing in the Veterinary Rehabilitation Patient. Veterinary Clinics of North America: Small Animal Practice, v. 35, n. 6, p. 1453–1471, 2005.

HARDY K.; THOM S. R.; NEUMANN T. Physiology and Medicine of Hyperbaric Oxygen Therapy. 1 ed. Philadelphia, PA: Saunders Elsevier, 2008.

HART J. The use of ultrasound therapy in wound healing. Journal of Wound Care, v. 7, n. 1, p. 25–28, 1998.

HAYASHI M. P.; FRIOLANI M. Aplicabilidade clínica cirúrgica da ozonioterapia em pequenos animais: revisão de literatura. Unimar Ciência, v. 27, n. 1-2, p.88-100, 2018.

HESS C. L.; HOWARD M. A.; ATTINGER C. E. A Review of Mechanical Adjuncts in Wound Healing: Hydrotherapy, Ultrasound, Negative Pressure Therapy, Hyperbaric Oxygen, and Electrostimulation. Annals of Plastic Surgery, v. 51, n. 2, p. 210–218, 2003

JARAMILLO, F. M. et al. Effects of transrectal medicinal ozone in horses - clinical and laboratory aspects. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 72, n. 1, p. 56–64, 2020.

KAUR, J. et al. ZnO Nanoparticles of Rubia cordifolia Extract Formulation Developed and Optimized with QbD Application, Considering Ex Vivo Skin Permeation, Antimicrobial and Antioxidant Properties. Molecules, v. 27, n. 1450, p. 1-16, 2022.

KOTRONIS G.; VAS P. R. J. Ultrasound Devices to Treat Chronic Wounds: The Current Level of Evidence. The International Journal of Lower Extremity Wounds, v. 19, n. 4, p. 341-349, 2020.

KOZAT S.; OKMAN E. N. Has Ozone Therapy a Future in Veterinary Medicine? Journal of Animal Husbandry and Dairy Science, v. 3, n. 3, p. 25-34, 2019.

LEVITAN D. M et al. Rationale for hyperbaric oxygen therapy in traumatic injury and wound care in small animal veterinary practice. Journal of Small Animal Practice, v. 62, n. 9, p. 719–729, 2021.

LI, Y.; et al. Injectable Hydrogel Based on Defect-Rich Multi-Nanozymes for Diabetic Wound Healing via an Oxygen Self-Supplying Cascade Reaction. Small, v. 18, n. 18, 2022.

LIMA, M.; FELIX, E.; CARDOSO, A. Aplicações e implicações do ozônio na indústria, ambiente e saúde. Química Nova, v. 44, n. 9, p. 1151-1158, 2021.

MARCHESINI B. F.; RIBEIRO S. B. Efeito da ozonioterapia na cicatrização de feridas. Fisioterapia Brasil, v. 21, n. 3, p. 281–288, 2020.

MOHSENI, M. et al. comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation. International Journal of Pharmaceutics, v. 564, p. 350–358, 2019.

NG, N.S. et al. The antimicrobial properties of some copper(II) and platinum(II) 1,10-phenanthroline complexes. Dalton Transactions, v. 42, n. 9, p. 3196-209, 2013.

NIINIKOSKI J. H. A. Clinical hyperbaric oxygen therapy, wound perfusion, and transcutaneous oximetry. World Journal of Surgery, v. 28, p. 307-311, 2004.

PETEOACĂ, A. et al. The use of ozone therapy in veterinary medicine: A systematic review. AgroLife Scientific Journal, v. 9, n. 2, p. 226-239, 2020.

SILVA, M. M. P. et al. Utilização de nanopartículas no tratamento de feridas: revisão sistemática. Revista da Escola de Enfermagem da USP, v. 51, n. 0, 8 jan. 2018.

SUREDA A. et al. Antioxidant Response of Chronic Wounds to Hyperbaric Oxygen Therapy. PLOS ONE, v. 11, n. 9, p.e. 0163371, 2016.

TAO, B. et al. Copper nanoparticles‐embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. Journal of Materials Chemistry, v. 4, n.1, p. 4-16, 2019.

TEODORO, A. N. et al. Ozônio no tratamento de ferida em gambá de orelha branca “Didelphis albivents”. Acta Scientiae Veterinariae, v. 51, p. 875, 2023.

THACKHAM J. A.; MCELWAIN D. L. S.; LONG R. J. The use of hyperbaric oxygen therapy to treat chronic wounds: A review. Wound Repair and Regeneration, v. 16, n. 3, p. 321–330, 2008.

WALI, N.; SHABBIR, A.; ABBAS, N.; NAQVI, S. Z. H. Synergistic eficacy of colistin and silver nanoparticles impregnated human amniotic membrane in a burn wound infected rat model, Scientific reports, v. 12, n. 6414, 2022.

WOKOVICH, A. M. et al. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. European Journal of Pharmaceutics and Biopharmaceutics, v. 64, p. 1-8, 2006.

YADOLLAHPOUR, A. et al. Ultrasound Therapy for Wound Healing: A Review of Current Techniques and Mechanisms of Action. Journal of Pure and Applied Microbiology, v. 8, p. 4071-4085, 2014.

ZHANG, J. et al. Increased Growth Factors Play a Role in Wound Healing Promoted by Noninvasive Oxygen-Ozone Therapy in Diabetic Patients with Foot Ulcers. Oxidative Medicine and Cellular Longevity, v. 2014, p. 273475, 2014.

Downloads

Publicado

2024-02-28

Como Citar

Alice de Quadros, E., de Oliveira Soares, F., Bernardes Bizinoto , L. ., Rodrigues Rosado, I. ., Martin, I. ., Machado Bertassoli, B., & Gabellini Leonel Alves, E. . (2024). Avanços no tratamento de feridas: Parte 2 . Peer Review, 6(4), 225–239. https://doi.org/10.53660/PRW-1870-3517

Edição

Seção

Articles