Growth of Urochloa grass in an oxisol treated with powdered silicate materials

Autores

Palavras-chave:

Urochloa decumbens cv. “Basilisk”, Biotite schist, Basalt, Biotite syenite

Resumo

An experiment was carried out in pots with a soil mixed with six powdered silicate materials originated from mining (kyanite, biotite schist, biotite syenite, basalt, vermiculite, or bentonite). These sources were mixed in 4.4 kg of soil (Anionic Acrustox) at the rates of 0 (control), or 440 g of ground silicate materials, in pots where Urochloa decumbens cultivar Basilisk was grown. The grass growth followed the relative total dry mass (%): 100 > 93.8 > 82.7 > 71.4 > 54.4 > 9.4 > 6.8 for biotite schist, bentonite, vermiculite, basalt, syenite, kyanite, and soil (control), respectively. Soil pH (6.5) ultimately decreased Mn availability to plants. Although some silicate materials increased Mn availability to plants, increasing treated plants growth, it was not possible to evaluate if plants were able to acquire more P when treated with silicate materials. Concentrations of Fe and P extracted from the soil and from shoots were highly correlated with dry mass. The reactivity of these materials in soils increasing soil pH may be an important parameter for ranking agrominerals, as the availability of nutrients was correlated to the amount of carbonate used to increase pH of the treated soil to 6.5.

Downloads

Não há dados estatísticos.

Referências

ALEJANDRO, S.; HOLLER, S.; MEIER, B.; PEITER, E. Manganese in plants: From acquisition to subcellular allocation. Frontiers in Plant Science, 11, 300, 2020.

ALMEIDA, D.S.; DELAI, L.B.; SAWAYA, A.C.H.F.; ROSOLEM, C.A.J.S.R. Exudation of organic acid anions by tropical grasses in response to low phosphorus availability. Scientific Reports, 10, 1-8, 2020.

ALOVISI, A. A.; ALOVISI, A. M.; TAQUES, M. M.; MEDEIROS, E. S. D.; DE SOUZA, L. C.; CASSOL, C. J. Chemical properties of soils submitted to the application of a bioactivator and basalt and serpentinite powders. Revista Brasileira de Engenharia Agrícola e Ambiental, 27, 811-819, 2023.

BARROW, N.; DEBNATH, A.; SEN, A. Mechanisms by which citric acid increases phosphate availability. Plant and Soil, 423, 193-204, 2018.

BASAK, B.B. Waste mica as alternative source of plant-available potassium: evaluation of agronomic potential through chemical and biological methods. Natural Resources Research, 27, 1–13, 2018. DOI: 10.1007/s11053-018-9430-3.

BATAGLIA, O.; FURLANI, A.; TEIXEIRA, J.; FURLANI, P.; GALLO, J. Metodos de análise quimica de plantas.Campinas: Instituto Agronômico, 1983.48p.

BRASIL. Ministery of State for Agriculture, Livestock and Supply. Normative Instruction Nº 5, mar. 10, 2016.

BROGGI, F.; OLIVEIRA, A.C.D.; FREIRE, F.J.; FREIRE, M.B.D.S.; NASCIMENTO, C.W. Adsorption and chemical extraction of phosphorus as a function of soil incubation time. Revista Brasileira de Engenharia Agrícola e Ambiental, 14, 32-38, 2010.

CRUZ, S.C.P.; BARBOSA, J.S.F.; PINTO, M.S.; PEUCAT, J.J.; PAQUETTE, J.L.; SOUZA, J.S.; MARTINS, V.D.; CHEMALE, F.; CARNEIRO, M.A. The Siderian-Orosirian magmatism in the Gaviao Paleoplate, Brazil: U-Pb geochronology, geochemistry and tectonic implications. Journal of South American Earth Sciences, 69, 43-79, 2016. DOI: 10.1016/j.jsames.2016.02.007.

CUADROS, J. Clay minerals interaction with microorganisms: a review. Clay Minerals, 52, 235-261, 2017.

EMBRAPA. Manual de Métodos de Análise de Solo. 3rd ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 2017. 576p.

EMBRAPA. Sistema brasileiro de classificação de solos. 3rd ed. Brasília: Empresa Brasileira de Pesquisa Agropecuária, 2013.

EVANGELISTA, H.J.; DELGADO, C.E.R. Agalmatolito do Quadrilátero Ferrífero, MG. Revista Brasileira de Geociências, 37, p. 195-203, 2007.

GALRÃO, E. Z. Correção da deficiência de micronutrientes em solos de Cerrado para culturas anuais. Embrapa Cerrados-Séries anteriores (INFOTECA-E). 1999. 2p.

GATTULLO, C.E.; ALLEGRETTA, I.; MEDICI, L.; FIJAN, R.; PII, Y.; CESCO, S.; MIMMO, T.; TERZANO, R. Silicon dynamics in the rhizosphere: Connections with iron mobilization. Journal of Plant Nutrition and Soil Science, 179, 409-417, 2016. DOI:10.1002/jpln.201500535.

KHAN, I.; FAHAD, S.; WU, L.; ZHOU, W.; XU, P.; SUN, Z.; SALAM, A.; IMRAN, M.; JIANG, M.; KUZYAKOV, Y.J.G.; HU, R. Labile organic matter intensifies phosphorous mobilization in paddy soils by microbial iron (III) reduction. Geoderma, 352, 185-196, 2019.

KOBAYASHI, T.; NOZOYE, T.; NISHIZAWA, N.K. Iron transport and its regulation in plants. Free Radical Biology and Medicine, 133, 11-20, 2019.

KORNDÖRFER, G.H.; PEREIRA, C.S.; NOLLA, A. Análise de silício: solo, planta e fertilizante. Uberlândia: GPSi-ICIAG-UFU, 2004. 34 p. (Boletim Técnico, 2).

KRAHL, L.L. Mineral formation and element release from aluminosilicate rocks promoted by maize rhizosphere. Planaltina, DF, University of Brasilia, 2020. 104p.

KRAHL, L.L.; ANGÉLICA, R.; VALADARES, L.; SOUZA-SILVA, J.; MARCHI, G.; MARTINS, E.D.S. Successive off take of elements by maize grown in pure basalt powder. African Journal of Agricultural Science, 15(2), 229-239. 2020. DOI: 10.5897/ajar2019.14546.

LI, G.; LI, H.; LEFFELAAR, P.A.; SHEN, J.; ZHANG, F. Dynamics of phosphorus fractions in the rhizosphere of fababean (Vicia faba L.) and maize (Zea mays L.) grown in calcareous and acid soils. Crop & Pasture Science, 66, 1151-1160. 2015.

LINDSAY, W.L.; NORVELL, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421-428, 1978.

LOPES, A.; GUILHERME, L.G. A career perspective on soil management in the Cerrado region of Brazil. Advances in Agronomy, 137, 1-72. 2016.

LUZ, A.B.; TOMEDI, P.; MARTINS, R. Agalmatolito. In: LUZ, A.B.; LINS, F.A.F. (Eds.). Rochas & Minerais Industriais: usos e especificações. Rio de Janeiro: CETEM/MCT, p.69-79. 2008.

MALMSTRÖM, M.; BANWART, S.; DURO, L.; WERSIN, P.; BRUNO, J. Biotite and chlorite weathering at 25°C: the dependence of pH and (bi)carbonate on weathering kinetics, dissolution stoichiometry, and solubility; and the relation to redox conditions in granitic aquifers. Stockholm: Swedish Nuclear Fuel and Waste Management Co, 1995. 128p.

MARCHI, G.; GUELFI-SILVA, D.R.; MALAQUIAS, J.V.; GUILHERME, L.R.G.; SPEHAR, C.R.; MARTINS, E.D.S. Solubility and availability of micronutrients extracted from silicate agrominerals. Pesquisa Agropecuária Brasileira, 55, e00807, 2020.

MEHLICH, A. Determination of P, Ca, Mg, K, Na and NH4 by North Carolina soil testing laboratories. Raleigh, NC: North Carolina Soil Test Division, 1953. (Raleigh, NC). 8p.

NAVARRETE, J.U.; CAPPELLE, I.J.; SCHNITTKER, K.; BORROK, D.M. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria. International Journal of Astrobiology, 12, 123-134, 2012. DOI:10.1017/s1473550412000493.

NAVARRO, G.R.B.; ZANARDO, A.; CONCEIÇÃO, F.T. O Grupo Araxá na região sul-sudoeste do Estado de Goiás. Geologia USP: Série Científica, 13(2), 5-28, 2013.

PAKTUNK, A.D. MODAN: an interactive computer program for estimating mineral quantities based on bulk composition. Computers and Geosciences, 24, 425-431, 1998. DOI: 10.1016/S0098-3004(98)00018-1.

SANTOS, H. Q.; FONSECA, D. M.; CANTARUTTI, R. B.; ALVAREZ V, V. H.; NASCIMENTO JÚNIOR, D. Níveis críticos de fósforo no solo e na planta para gramíneas forrageiras tropicais, em diferentes idades. Revista Brasileira de Ciência do Solo, 26, 173-182. 2002.

SHAPIRO, S.S.; WILK, M.B. An analysis of variance test for normality (Complete samples). Biometrika, 52, 1965. DOI: 10.2307/2333709.

SHEN, Q.; WEN, Z.; DONG, Y.; LI, H.; MIAO, Y.; SHEN, J. The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration. AoB Plants, 10, ply054, 2018.

SINGH, R.; BHUMBLA, D.; KEEFER, R. Recommended soil sulfate-S tests. In: NCSS - The Northeast Coordinating Committee for Soil Testing. Recommended soil testing procedures for the Northeastern United States. 3rd Ed. p.55-62, 2011.

R TEAM. A language and environment for statistical computing. 3.3.3 ed. Vienna, Austria, R Foundation for Statistical Computing, 2017.

USDA. Ilustrated guide to soil taxonomy. Lincoln, Nebraska: U.S. Department of Agriculture, Natural Resources Conservation Services, National Soil Survey Center, 2015.

WALKER, E.L.; CONNOLLY, E.L. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Current Opinion in Plant Biology, 11, 530-535, 2008.

WERNER, J. C.; PAULINO, V. T.; CANTARELLA, H.; ANDRADE, N. O.; QUAGGIO, J. A. Forrageiras. In: VAN RAIJ, B.; CANTARELLA, H.; QUAGGIO, J. A.; FURLANI, A. M. C. (Eds.). Recomendações de adubação e calagem para o Estado de São Paulo. 2. ed. Campinas: IAC, 1997. p. 261-273. (IAC. Boletim Técnico, 100).

ZHANG, Y.; RIMSTIDT, D.J.; HUANG, Y.; ZHU, C. Kyanite far from equilibrium dissolution rate at 0–22° C and pH of 3.5–7.5. Acta Geochimica, 38, 472-480, 2019.

Publicado

2024-02-08

Como Citar

Marchi, G., Silva, J. C. S., Soares, J. P. G., Abrantes, E. G. de, & Martins, Éder de S. (2024). Growth of Urochloa grass in an oxisol treated with powdered silicate materials. Peer W, 6(2), 248–272. Recuperado de https://peerw.org/index.php/journals/article/view/1759

Edição

Seção

Articles