Síntese de pontos quânticos de carbono (PQC) de biomassa via rota hidrotérmica: Uma revisão sistemática

Autores

DOI:

https://doi.org/10.53660/PRW-1741-3342

Palavras-chave:

Energia renovável, Nanotecnologia, Dopagem, Resíduo zero

Resumo

Os pontos quânticos de carbono estão sendo aplicados em várias áreas de tecnologia, devido às suas propriedades, como tamanho nanométrico, fotoluminescência e aos grupos funcionais presentes na superfície. Esta revisão sistemática teve como objetivo analisar o método hidrotérmico e a sua relação entre os parâmetros de síntese do PQC, envolvendo diferentes tipos de biomassa e condições de operação, como temperatura e tempo. A revisão sistemática foi realizada na base de dados ScienceDirect, identificando os principais artigos que sintetizaram os PQC a partir de biomassa vegetal. Foi feito um levantamento de 84 artigos encontrados, 16 atenderam aos parâmetros de inclusão. A maioria dos autores caracterizaram os PQC utilizando de diferentes técnicas. Os resultados mostraram que os PQC sintetizados pelo método hidrotérmico, apresentaram aplicações nas áreas de biomagem, detecção, sensores de pH, fotocatálise, fitoremediação, inibição de corrosão e terapia fotodinâmica.  

Downloads

Não há dados estatísticos.

Referências

AMERICAN CHEMICAL SOCIETY. 12 Principles of Green Chemistry. Disponível em: https://www.acs.org/content/acs/en/greenchemistry/principles/12-principles-of-green-chemistry.html. Acesso em: 03 jan. 2024.

ANG, W. L.; BOON MEE, C. A. L.; SAMBUDI, N. S.; MOHAMMAD, A. W.; LEO, C. P.; MAHMOUDI, E.; BA-ABBAD, M.; BENAMOR, A. Microwave-assisted conversion of palm kernel shell biomass waste to photoluminescent carbon dots. Scientific Reports, v. 10, n. 1, 1 dez. 2020.

ARKAN, E.; BARATI, A.; RAHMANPANAH, M.; HOSSEINZADEH, L.; MORADI, S.; HAJIALYANI, M. Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells. Advanced Pharmaceutical Bulletin, v. 8, n. 1, p. 149–155, 2018.

ATCHUDAN, R.; JEBAKUMAR IMMANUEL EDISON, T. N.; SHANMUGAM, M.; PERUMAL, S.; SOMANATHAN, T.; LEE, Y. R. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E: Low-Dimensional Systems and Nanostructures, v. 126, 1 fev. 2021.

CANEVARI, T. C.; NAKAMURA, M.; CINCOTTO, F. H.; DE MELO, F. M.; TOMA, H. E. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochimica Acta, v. 209, p. 464–470, 10 ago. 2016.

CAO, M.; LIU, Y.; ZHU, M.; XIA, J.; XUAN, T.; JIANG, D.; ZHOU, G.; LI, H. A novel and highly stable dual-emission carbon dots-based phosphor. Journal of Alloys and Compounds, v. 873, 25 ago. 2021.

CHAO-MUJICA, F. J.; GARCIA-HERNÁNDEZ, L.; CAMACHO-LÓPEZ, S.; CAMACHO-LÓPEZ, M.; CAMACHO-LÓPEZ, M. A.; REYES CONTRERAS, D.; PÉREZ-RODRÍGUEZ, A.; PEÑA-CARAVACA, J. P.; PÁEZ-RODRÍGUEZ, A.; DARIAS-GONZALEZ, J. G.; HERNANDEZ-TABARES, L.; ARIAS DE FUENTES, O.; PROKHOROV, E.; TORRES-FIGUEREDO, N.; REGUERA, E.; DESDIN-GARCÍA, L. F. Carbon quantum dots by submerged arc discharge in water: Synthesis, characterization, and mechanism of formation. Journal of Applied Physics, v. 129, n. 16, 28 abr. 2021.

CHEN, L.; GUO, C. X.; ZHANG, Q.; LEI, Y.; XIE, J.; EE, S.; GUAI, G.; SONG, Q.; LI, C. M. Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells. ACS Applied Materials and Interfaces, v. 5, n. 6, p. 2047–2052, 27 mar. 2013.

CHEN, L.; WU, C.; DU, P.; FENG, X.; WU, P.; CAI, C. Electrolyzing synthesis of boron-doped graphene quantum dots for fluorescence determination of Fe3+ ions in water samples. Talanta, v. 164, p. 100–109, 1 mar. 2017.

CHENG, K.; SHAO, W.; LI, H.; GUO, W.; BIAN, H.; HAN, J.; WU, G.; XING, W. Biomass derived carbon dots mediated exciton dissociation in rose flower-like carbon nitride for boosting photocatalytic performance. Industrial Crops and Products, v. 192, 1 fev. 2023.

COSTA, R. S.; DE CASTRO, M. O.; DA SILVA, G. H.; DELITE, F. de S.; STRAUSS, M.; FERREIRA, O. P.; MARTINEZ, D. S. T.; VIANA, B. C. Carbon-dots from babassu coconut (Orbignya speciosa) biomass: Synthesis, characterization, and toxicity to Daphnia magna. Carbon Trends, v. 5, 1 out. 2021.

FANG, M.; WANG, B.; QU, X.; LI, S.; HUANG, J.; LI, J.; LU, S.; ZHOU, N. State-of-the-art of biomass-derived carbon dots: Preparation, properties, and applicationsChinese Chemical LettersElsevier B.V., 1 jan. 2024.

FERJANI, H.; ABDALLA, S.; OYEWO, O. A.; ONWUDIWE, D. C. Facile synthesis of carbon dots by the hydrothermal carbonization of avocado peels and evaluation of the photocatalytic property. Inorganic Chemistry Communications, v. 160, 1 fev. 2024.

GAO, H.; XUE, C.; HU, G.; ZHU, K. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrasonics Sonochemistry, v. 37, p. 120–127, 1 jul. 2017.

HALLAJ, T.; AMJADI, M.; MANZOORI, J. L.; AZIZI, N. A novel chemiluminescence sensor for the determination of indomethacin based on sulfur and nitrogen co-doped carbon quantum dot–KMnO4 reaction. Luminescence, v. 32, n. 7, p. 1174–1179, 1 nov. 2017.

HUANG, F.; TAN, D.; LI, D.; GUO, S.; YAN, Y.; ZHANG, W. Synthesis of broad spectrum-driven photocatalysts waste biomass-derived carbon quantum dots/g-C3N4 with superior energy bands for PPCPs restoration. Journal of Alloys and Compounds, v. 947, 25 jun. 2023.

JIA, Y.; CHENG, Z.; WANG, G.; SHUANG, S.; ZHOU, Y.; DONG, C.; DU, F. Nitrogen doped biomass derived carbon dots as a fluorescence dual-mode sensing platform for detection of tetracyclines in biological and food samples. Food Chemistry, v. 402, 15 fev. 2023.

JOSEPH, J.; ANAPPARA, A. A. White-Light-Emitting Carbon Dots Prepared by the Electrochemical Exfoliation of Graphite. ChemPhysChem, v. 18, n. 3, p. 292–298, 2 fev. 2017.

KRISHNAIAH, P.; ATCHUDAN, R.; PERUMAL, S.; SALAMA, E. S.; LEE, Y. R.; JEON, B. H. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere, v. 286, 1 jan. 2022.

LI, L.; DONG, T. Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping. Journal of Materials Chemistry C, v. 6, n. 30, p. 7944–7970, 2018.

LI, M.; CHEN, T.; GOODING, J. J.; LIU, J. Review of carbon and graphene quantum dots for sensing. ACS Sensors, v. 4, n. 7, p. 1732–1748, 26 jul. 2019.

LI, T.; ZHAO, D.; LI, L.; MENG, Y.; XIE, Y.; FENG, D.; WU, F.; XIE, D.; LIU, Y.; MEI, Y. Unraveling fluorescent mechanism of biomass-sourced carbon dots based on three major components: Cellulose, lignin, and protein. Bioresource Technology, v. 394, p. 130268, fev. 2024.

LIU, M.; XU, Y.; NIU, F.; GOODING, J. J.; LIU, J. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst, v. 141, n. 9, p. 2657–2664, 7 maio 2016.

LONG, W. J.; LI, X. Q.; YU, Y.; HE, C. Green synthesis of biomass-derived carbon dots as an efficient corrosion inhibitor. Journal of Molecular Liquids, v. 360, 15 ago. 2022.

MAHAT, N. A.; SHAMSUDIN, S. A. Transformation of oil palm biomass to optical carbon quantum dots by carbonisation-activation and low temperature hydrothermal processes. Diamond and Related Materials, v. 102, 1 fev. 2020.

PALACIO-VERGARA, M.; ÁLVAREZ-GÓMEZ, M.; GALLEGO, J.; LÓPEZ, D. Biomass solvothermal treatment methodologies to obtain carbon quantum dots: A systematic review. Talanta Open, v. 8, 1 dez. 2023.

PARK, S. Y.; LEE, C. Y.; AN, H. R.; KIM, H.; LEE, Y. C.; PARK, E. C.; CHUN, H. S.; YANG, H. Y.; CHOI, S. H.; KIM, H. S.; KANG, K. S.; PARK, H. G.; KIM, J. P.; CHOI, Y.; LEE, J.; LEE, H. U. Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications. Nanoscale, v. 9, n. 26, p. 9210–9217, 14 jul. 2017.

PAUL, A.; KURIAN, M. Facile synthesis of nitrogen doped carbon dots from waste biomass: Potential optical and biomedical applications. Cleaner Engineering and Technology, v. 3, 1 jul. 2021.

RODRÍGUEZ-CARBALLO, G.; MORENO-TOST, R.; FERNANDES, S.; ESTEVES DA SILVA, J. C. G.; PINTO DA SILVA, L.; GALIANO, E. C.; ALGARRA, M. Nitrogen doped carbon dots as a photocatalyst based on biomass. A life cycle assessment. Journal of Cleaner Production, v. 423, 15 out. 2023.

RUSSO, P.; HU, A.; COMPAGNINI, G.; DULEY, W. W.; ZHOU, N. Y. Femtosecond laser ablation of highly oriented pyrolytic graphite: A green route for large-scale production of porous graphene and graphene quantum dots. Nanoscale, v. 6, n. 4, p. 2381–2389, 21 fev. 2014.

SADEGHI, J.; LAKZIAN, A.; HALAJNIA, A.; ALIKHANI, M. Effects of fungal carbon dots application on growth characteristics and cadmium uptake in maize. Plant Physiology and Biochemistry, v. 204, 1 nov. 2023.

SELVARAJU, N.; SIVALINGAM, Y.; VENUGOPAL, G. Enhanced green H2 generation using biomass-derived nitrogen-doped carbon dots incorporated with rare earth metal hydroxide [Gd(OH)3] nanorods. International Journal of Hydrogen Energy, 2023.

SHAN, F.; FU, L.; CHEN, X.; XIE, X.; LIAO, C.; ZHU, Y.; XIA, H.; ZHANG, J.; YAN, L.; WANG, Z.; YU, X. Waste-to-wealth: Functional biomass carbon dots based on bee pollen waste and application. Chinese Chemical Letters, v. 33, n. 6, p. 2942–2948, 1 jun. 2022.

SHI, L.; LI, Y.; LI, X.; ZHAO, B.; WEN, X.; ZHANG, G.; DONG, C.; SHUANG, S. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu2+ sensing in living cells. Biosensors and Bioelectronics, v. 77, p. 598–602, 15 mar. 2016.

SIMÕES, A. R.; SOUZA, A. T. de; MEURER, E. C.; OLIVEIRA, É. L. de; SCALIANTE, M. H. N. O.; ERLER, R. R.; CAETANO, W. Carbon quantum dots of Moringa oleifera with bactericidal action. Peer Review, v. 5, n. 26, p. 503–520, 19 dez. 2023. Disponível em: <https://peerw.org/index.php/journals/article/view/1659>.

SONG, Z.; QUAN, F.; XU, Y.; LIU, M.; CUI, L.; LIU, J. Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon, v. 104, p. 169–178, 1 ago. 2016.

TANG, X.; YU, H.; BUI, B.; WANG, L.; XING, C.; WANG, S.; CHEN, M.; HU, Z.; CHEN, W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioactive Materials, v. 6, n. 6, p. 1541–1554, 1 jun. 2021.

TAO, X.; LIAO, M.; WU, F.; JIANG, Y.; SUN, J.; SHI, S. Designing of biomass-derived carbon quantum dots@polyvinyl alcohol film with excellent fluorescent performance and pH-responsiveness for intelligent detection. Chemical Engineering Journal, v. 443, 1 set. 2022.

WAN, X.; LI, S.; ZHUANG, L.; TANG, J. l-Tryptophan-capped carbon quantum dots for the sensitive and selective fluorescence detection of mercury ion in aqueous solution. Journal of Nanoparticle Research, v. 18, n. 7, 1 jun. 2016.

WANG, C.; SHI, H.; YANG, M.; YAN, Y.; LIU, E.; JI, Z.; FAN, J. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Materials Research Bulletin, v. 124, 1 abr. 2020a.

WANG, H.; WU, X.; DONG, W.; LEE, S. L.; YUAN, Q.; GAN, W. One-step preparation of single-layered graphene quantum dots for the detection of Fe3+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, v. 226, 5 fev. 2020b.

WANG, S.; HUO, X.; ZHAO, H.; DONG, Y.; CHENG, Q.; LI, Y. One-pot green synthesis of N,S co-doped biomass carbon dots from natural grapefruit juice for selective sensing of Cr(VI). Chemical Physics Impact, v. 5, 1 dez. 2022.

WU, P.; LI, W.; WU, Q.; LIU, Y.; LIU, S. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment. RSC Advances, v. 7, n. 70, p. 44144–44153, 2017.

XU, H. B.; ZHOU, S. H.; LI, M. Y.; ZHANG, P. R.; WANG, Z. H.; TIAN, Y. M.; WANG, X. Q. Preparation of biomass-waste-derived carbon dots from apricot shell for highly sensitive and selective detection of ascorbic acid. Chinese Journal of Analytical Chemistry, v. 50, n. 12, 1 dez. 2022.

ZHANG, Q.; TIAN, F.; ZHOU, Q.; ZHANG, C.; TANG, S.; JIANG, L.; DU, S. Targeted ginkgo kernel biomass precursor using eco-friendly synthesis of efficient carbon quantum dots for detection of trace nitrite ions and cell imaging. Inorganic Chemistry Communications, v. 140, 1 jun. 2022.

Downloads

Publicado

2024-01-19

Como Citar

Simões, A. R., de Souza, A. T., Meurer, E. C. ., Oliveira, Évelin L. de ., & Scaliante, M. H. N. O. (2024). Síntese de pontos quânticos de carbono (PQC) de biomassa via rota hidrotérmica: Uma revisão sistemática. Peer Review, 6(1), 296–312. https://doi.org/10.53660/PRW-1741-3342

Edição

Seção

Articles