Synthesis of graphene quantum dots from Moringa oleifera seed biomass doped with phosphate
Palavras-chave:
Nanotechnology, Light emission, Biomass, Biomedicine, Zero wasteResumo
In this work, graphene quantum dots (GQDs) were synthesized from Moringa oleifera seed biomass doped with phosphorus, using a low-cost, renewable hydrothermal method. The biomass was ground and sieved (30 mesh), and the classified powder was transferred to a Teflon capsule, placed in a stainless-steel reactor (210 ºC, 24 h). Afterwards, 20 mL of distilled water were added to the synthesized GQDs, stirred for 30 min, and filtered through Whatman filter paper. Then they were centrifuged (12000 rpm, 10 min) and filtered through a 0.22 μm membrane. The filtrate was dialyzed in a cellulose dialysis bag, with a cut-off size of 3.5 kDa, for 7 days in absolute ethanol (99.5%), with gentle stirring, and the dialysate was exchanged every 24 h. The dialysate was dried at 105 ºC for 24 h. The GQDs were characterized by X-ray energy dispersive spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), UV-vis electronic absorption, fluorescence emission, X-ray Diffraction and high-resolution transmission electron microscopy (HRTEM). The results show the GQDs with an average size of 18.63 ± 4.24 nm and high fluorescence (bright blue) under ultraviolet light (365 nm). Our GQDs are promising for application in bioimaging and bioanalysis.
Downloads
Referências
ABBAS, A.; ABBAS, S.; TABISH, T. A.; BULL, S. J.; PHAN, A. N.; LIM, T. M. Role of precursor microstructure in the development of graphene quantum dots from biomass. Journal of Environmental Chemical Engineering, v. 9, n. 5, 1 out. 2021.
AHMED, B.; KUMAR, S.; OJHA, A. K.; HIRSCH, F.; RIESE, S.; FISCHER, I. Facile synthesis and photophysics of graphene quantum dots. Journal of Photochemistry and Photobiology A: Chemistry, v. 364, p. 671–678, 1 set. 2018.
AL GHAMDI, H. S.; AL-GHAMDI, A. A. Opening band gap of multi-color graphene quantum dots using D-fructose as a green precursor. Alexandria Engineering Journal, v. 79, p. 155–163, 15 set. 2023.
BAWEJA, H.; JEET, K. Economical and green synthesis of graphene and carbon quantum dots from agricultural waste. Materials Research Express, v. 6, n. 8, 19 jun. 2019.
CHEN, C. Y.; TSAI, Y. H.; CHANG, C. W. Evaluation of the dialysis time required for carbon dots by HPLC and the properties of carbon dots after HPLC fractionation. New Journal of Chemistry, v. 43, n. 16, p. 6153–6159, 2019.
CHEN, L.; WU, C.; DU, P.; FENG, X.; WU, P.; CAI, C. Electrolyzing synthesis of boron-doped graphene quantum dots for fluorescence determination of Fe3+ ions in water samples. Talanta, v. 164, p. 100–109, 1 mar. 2017.
CHHABRA, V. A.; KAUR, R.; KUMAR, N.; DEEP, A.; RAJESH, C.; KIM, K. H. Synthesis and spectroscopic studies of functionalized graphene quantum dots with diverse fluorescence characteristics. RSC Advances, v. 8, n. 21, p. 11446–11453, 2018.
CHUNG, S.; REVIA, R. A.; ZHANG, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and TherapyAdvanced MaterialsJohn Wiley and Sons Inc, 1 jun. 2021.
DE OLIVEIRA, É. L.; FERREIRA, S. B. S.; DE CASTRO-HOSHINO, L. V.; CAMPANHOLI, K. D. S. S.; CALORI, I. R.; DE MORAIS, F. A. P.; KIMURA, E.; DA SILVA JUNIOR, R. C.; BRUSCHI, M. L.; SATO, F.; HIOKA, N.; CAETANO, W. Thermoresponsive Hydrogel-Loading Aluminum Chloride Phthalocyanine as a Drug Release Platform for Topical Administration in Photodynamic Therapy. Langmuir, v. 37, n. 10, p. 3202–3213, 16 mar. 2021.
DWITYA, S. S.; HSUEH, Y. H.; WANG, S. S. S.; LIN, K. S. Ultrafine nitrogen-doped graphene quantum dot structure and antibacterial activities against Bacillus subtilis 3610. Materials Chemistry and Physics, v. 295, 1 fev. 2023.
GAO, H.; XUE, C.; HU, G.; ZHU, K. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrasonics Sonochemistry, v. 37, p. 120–127, 1 jul. 2017a.
GAO, T.; WANG, X.; YANG, L. Y.; HE, H.; BA, X. X.; ZHAO, J.; JIANG, F. L.; LIU, Y. Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular Imaging. ACS Applied Materials and Interfaces, v. 9, n. 29, p. 24846–24856, 26 jul. 2017b.
GU, S.; HSIEH, C. Te; CHIANG, Y. M.; TZOU, D. Y.; CHEN, Y. F.; GANDOMI, Y. A. Optimization of graphene quantum dots by chemical exfoliation from graphite powders and carbon nanotubes. Materials Chemistry and Physics, v. 215, p. 104–111, 15 ago. 2018.
JAHDALY, B. A. Al; ELSADEK, M. F.; AHMED, B. M.; FARAHAT, M. F.; TAHER, M. M.; KHALIL, A. M. Outstanding graphene quantum dots from carbon source for biomedical and corrosion inhibition applications: A reviewSustainability (Switzerland)MDPI AG, 2 fev. 2021.
KOUR, R.; ARYA, S.; YOUNG, S.-J.; GUPTA, V.; BANDHORIA, P.; KHOSLA, A. Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. Journal of The Electrochemical Society, v. 167, n. 3, p. 037555, 1 fev. 2020.
LATHA, B. D.; SOUMYA, K.; MORE, N.; MOUNIKA, C.; GUDURU, A. T.; SINGH, G.; KAPUSETTI, G. Fluorescent carbon quantum dots for effective tumor diagnosis: A comprehensive review. Biomedical Engineering Advances, v. 5, p. 100072, jun. 2023.
LI, M.; CHEN, T.; GOODING, J. J.; LIU, J. Review of carbon and graphene quantum dots for sensing. ACS Sensors, v. 4, n. 7, p. 1732–1748, 26 jul. 2019.
LIANG, L.; WANG, C.; LI, S.; CHU, X.; SUN, K. Nutritional compositions of Indian Moringa oleifera seed and antioxidant activity of its polypeptides. Food Science and Nutrition, v. 7, n. 5, p. 1754–1760, 1 maio 2019.
LINGAM, K.; PODILA, R.; QIAN, H.; SERKIZ, S.; RAO, A. M. Graphene: Evidence for Edge-State Photoluminescence in Graphene Quantum Dots (Adv. Funct. Mater. 40/2013). Advanced Functional Materials, v. 23, n. 40, p. 5100–5100, out. 2013.
MAO, Q., A Molecular Dynamics Study of the Cellulose-Graphene Oxide Nanocomposites: The Interface Effects. All Dissertations. 2554. 2018.
MELO, M. A.; OSTERLOH, F. E. Defect States Control Effective Band Gap and Photochemistry of Graphene Quantum Dots. [s.l: s.n.]. Disponível em: <http://pubs.acs.org>.
NGUYEN, H. Y.; LE, X. H.; DAO, N. T.; PHAM, N. T.; VU, T. H. H.; NGUYEN, N. H.; PHAM, T. N. Microwave-assisted synthesis of graphene quantum dots and nitrogen-doped graphene quantum dots: Raman characterization and their optical properties. Advances in Natural Sciences: Nanoscience and Nanotechnology, v. 10, n. 2, 16 abr. 2019.
NXELE, S. R.; NYOKONG, T. Time-dependent characterization of graphene quantum dots and graphitic carbon nitride quantum dots synthesized by hydrothermal methods. Diamond and Related Materials, v. 121, 1 jan. 2022.
OUYANG, D.; HU, L.; WANG, G.; DAI, B.; YU, F.; ZHANG, L. A review of biomass-derived graphene and graphene-like carbons for electrochemical energy storage and conversion. New Carbon Materials, v. 36, n. 2, p. 350–372, abr. 2021.
RABEYA, R.; MAHALINGAM, S.; BTE, A.; MANAP, A.; SATGUNAM, M.; HUA, C. Structural Defects in Graphene Quantum Dots: A Review-structural-defects-in-graphene-quantum-dots-a-review 1. 2021.
RANA, J. S.; CHHOTU, D.; KHATRI, P.; NEHRA, K. Comparative account of antifungal activity of green and chemically synthesized zinc oxide nanoparticles in combination with agricultural fungicides Bacteriocin and their interaction with nanoparticles View project Chickpea View project. [s.l: s.n.]. Disponível em: <https://www.researchgate.net/publication/325264291>.
SEKIYA, R.; UEMURA, Y.; NAITO, H.; NAKA, K.; HAINO, T. Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots. Chemistry - A European Journal, v. 22, n. 24, p. 8198–8206, 6 jun. 2016.
SELVAKUMAR, T.; RAJARAM, M.; NATARAJAN, A.; HARIKRISHNAN, L.; ALWAR, K.; RAJARAM, A. Highly Efficient Sulfur and Nitrogen Codoped Graphene Quantum Dots as a Metal-Free Green Photocatalyst for Photocatalysis and Fluorescent Ink Applications. ACS Omega, v. 7, n. 15, p. 12825–12834, 19 abr. 2022.
SHEHAB, M.; EBRAHIM, S.; SOLIMAN, M. Graphene quantum dots prepared from glucose as optical sensor for glucose. Journal of Luminescence, v. 184, p. 110–116, 1 abr. 2017.
SOHOULI, E.; TEYMOURINIA, H.; RAMAZANI, A.; ADIB, K. Preparation of high-performance supercapacitor electrode with nanocomposite of CuO/NCNO flower-like. Scientific Reports, v. 13, n. 1, 1 dez. 2023.
TETSUKA, H.; NAGOYA, A.; FUKUSUMI, T.; MATSUI, T. Molecularly Designed, Nitrogen-Functionalized Graphene Quantum Dots for Optoelectronic Devices. Advanced Materials, v. 28, n. 23, p. 4632–4638, 1 jun. 2016.
TIAN, P.; TANG, L.; TENG, K. S.; LAU, S. P. Graphene quantum dots from chemistry to applicationsMaterials Today ChemistryElsevier Ltd, 1 dez. 2018.
TSU, B.; CHU, T.; CHATTERJEE, S.; CHU, B. T. T. 1 Graphene-Based Polymer Nanocomposites. [s.l: s.n.]. Disponível em: <https://www.researchgate.net/publication/280101269>.
WANG, G.; GUO, Q.; CHEN, D.; LIU, Z.; ZHENG, X.; XU, A.; YANG, S.; DING, G. Facile and Highly Effective Synthesis of Controllable Lattice Sulfur-Doped Graphene Quantum Dots via Hydrothermal Treatment of Durian. ACS Applied Materials and Interfaces, v. 10, n. 6, p. 5750–5759, 14 fev. 2018.
WANG, L.; WANG, Y.; XU, T.; LIAO, H.; YAO, C.; LIU, Y.; LI, Z.; CHEN, Z.; PAN, D.; SUN, L.; WU, M. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nature Communications, v. 5, 2014.
WU, J.; WANG, P.; WANG, F.; FANG, Y. Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced raman spectroscopy. Nanomaterials, v. 8, n. 10, 22 out. 2018.
XIE, X.; GOODELL, B. Thermal degradation and conversion of plant biomass into high value carbon products. ACS Symposium Series, v. 1158, p. 147–158, 10 jun. 2014.
YIN, L.; ZHOU, J.; LI, W.; ZHANG, J.; WANG, L. Yellow fluorescent graphene quantum dots as a phosphor for white tunable light-emitting diodes. RSC Advances, v. 9, n. 16, p. 9301–9307, 2019.