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RESUMO 

Os métodos para medir a atividade antioxidante, in vitro, são cruciais na avaliação do potencial de 

substâncias antioxidantes em alimentos e compostos isolados, devido a simplicidade, custo relativamente 

baixo e rapidez, o que permite a triagem eficiente de inúmeras amostras. Os métodos amplamente utilizados 

são ORAC, ABTS, DPPH, FRAP e Folin Ciocalteu. A padronização é um desafio, pois diferentes ensaios 

avaliam propriedades antioxidantes específicas. Os métodos in vitro, no entanto, têm limitações. Eles não 

replicam totalmente o complexo sistema biológico humano onde ocorrem interações dinâmicas entre 

antioxidantes, enzimas e radicais, mas a correlação entre resultados in vitro e in vivo nem sempre é possível. 

Contudo os métodos in vitro ofereçam triagem rápida e insights preliminares sobre o potencial antioxidante, 

e devem ser complementados por estudos in vivo. A seleção de métodos apropriados depende dos objetivos 

da avaliação, e a combinação de múltiplas técnicas pode fornecer informações mais abrangentes sobre as 

atividades antioxidantes para a promoção da saúde através dos alimentos.  

Palavras-chave: Atividade antioxidante; radicais livres; métodos in vitro; alimentos; potencial 

antioxidante.  

 

 

 

 

mailto:henriqueta.talita@embrapa.br


 
337 

 

ABSTRACT 

Methods for measuring antioxidant activity, in vitro, are crucial in evaluating the potential of antioxidant 

substances in foods and isolated compounds, due to their simplicity, relatively low cost and speed, which 

allows efficient screening of numerous samples. The widely used methods are ORAC, ABTS, DPPH, FRAP 

and Folin Ciocalteu. Standardization is a challenge, as different assays evaluate specific antioxidant 

properties. In vitro methods, however, have limitations. They do not fully replicate the complex human 

biological system where dynamic interactions between antioxidants, enzymes and radicals occur, but 

correlation between in vitro and in vivo results is not always possible. However, in vitro methods offer rapid 

screening and preliminary insights into antioxidant potential, and should be complemented by in vivo 

studies. The selection of appropriate methods depends on the objectives of the assessment, and the 

combination of multiple techniques can provide more comprehensive information on the health-promoting 

antioxidant activities of foods. 

 

Keywords: Antioxidant activity; free radicals; in vitro methods; food; antioxidant potential.  
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INTRODUÇÃO  

 

Measurements of antioxidant activity in vitro are important sources of information 

on free radical scavenging by antioxidant substances present in a food or even substances 

isolated from a separation method. Figure 1 shows some methods currently used to 

determine this property and their respective mechanisms of action. However, there is still 

a lack of standardization in the experimental procedures and in the expression of the 

results, and no method has yet achieved unanimous acceptance. Thus, one of the main 

challenges in the evaluation of antioxidant potential is to know which methods are most 

suitable for a specific application (Apak et al., 2016).  

Importantly, most authors do not distinguish the terms antioxidant capacity from 

antioxidant activity, but some authors classify capacity measures as endpoint assays, 

which measure the inactivation of reactive species in a fixed time (thermodynamic 

methods) and activity measures those kinetics-based assays expressed as reaction rates or 

elimination percentages per unit time. In the present work we treat both terms 

interchangeably (Apak et al., 2013; Apak et al., 2016). 

 

Figure 1: Some methods for antioxidant assay and their mechanisms. 

 

Source: Authors (2023). 

 

There are several methods and techniques for determining AA such as those that 

look for activity against specific radicals like radical sequestering assays: superoxide, 

nitric oxide, hydroxyl, and hydrogen peroxide (Fernando and Soysa, 2015; Lalhminghlui 
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and Jagetia, 2018) Chemiluminescence methods, which use luminol and fluorescence 

measurement with the excitation lamp turned off (Pogačnik and Ulrih, 2012). Total 

oxyradical elimination capacity (TOSC) method, which measures the decrease in 

ethylene gas production caused by inhibition of thermal hydrolysis by two reagents and 

in the presence of antioxidant compounds (Garrett et al., 2010). Lipid peroxidation 

method that uses fluorescence and thiobarbituric acid (Chang and Kim, 2018).  

 In addition, online HPLC methods available measure the AA of each species 

eluted from the column through a T-type connection through which the reagent (DPPH) 

enters and a second UV-VIS detector is coupled (Pedan et al., 2016).  

There are also in vitro methods with biological particularities, like deoxyribose 

degradation assay. This method is widely used to evaluate the hydroxyl radical and can 

simultaneously measure pro-antioxidant and antioxidant activities depending on the 

reaction medium employed.  Furthermore, the anti-hemolytic activity assay measures the 

ability to inhibit hemolysis in red blood cells exposed to oxidative stress by ROS in the 

presence of antioxidant substances (Chobot, 2010; Karim, et al., 2020). 

Despite all the variety and even specificity of some methods available, the most 

widely used in the scientific literature today are still: ORAC, ABTS, DPPH, FRAP, and 

Folin Ciocalteu, which will be further detailed (Mazumder et al., 2020).   

 

The SET and HAT mechanisms 

As mentioned above, in methods for measuring AA in vitro antioxidant substances 

react with free radicals generated in the medium by two different mechanisms:  SET or 

HAT or a combination of both. The HAT-type reaction occurs in a single step (Figure 2), 

where the free radical removes a hydrogen atom from the antioxidant substance and thus 

the antioxidant itself becomes a radical (undergoes oxidation). The SET mechanism 

occurs by the transfer of a single electron from the antioxidant substrate to the free radical, 

producing a radical intermediate and itself becoming oxidized to a cation. Depending on 

properties such as ionization potential, solubility and partition coefficient of the radical 

formed, a second step can occur, in this case a HAT step, where the hydrogen from the 

cation is captured giving rise to a stable molecule and a radical of the antioxidant 

substance (Kumar et al., 2017). The HAT and SET mechanisms provide conceptually 

different information: 
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- HAT is a kinetic measurement, while SET is a thermodynamic measurement 

based on the redox potential of the reactants. 

- HAT-based assays (ORAC, for example) allow you to estimate the capture 

capacity of most reactive compounds. 

- SET-based assays (FRAP, for example) provide an overall picture of the 

oxidation/reduction efficiency of all antioxidants present in the sample, including the 

"slow" ones, which are not detected by kinetic methods (Ferreira and Avaca, 2008; Sousa, 

2013; Liang and Kitts, 2014). 

 

Figure 2: General scheme of the antioxidant reaction steps of SET and HAT mechanisms. 

 

Source: Authors (2023). 

 

Data supplementation with biological assays nowadays is important since the antioxidant 

capacity estimated from HAT and SET mechanisms does not have a correlation with a 

live organism process. There are several methods for assessing antioxidant capacity, 

especially in foods, using vivo methods, like specific cell cultures and biological activity 

methods (Zhang et al., 2017; Furger, 2021). 

 

Equivalence methods 

The obtained AA measurements can be compared with the response of known 

antioxidants by using linear regression curves for known antioxidant substances (Figure 

3). This is an attempt to normalize the response of the method by comparing it to the 

response of another antioxidant. According to Litescu et al., 2014, the most commonly 

used antioxidant substances in this attempt at response standardization are: Trolox (6-

hydroxy-2-5-7-8-tetramethylchromo2-carboxylic acid - an analog of vitamin E), vitamin 
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C, gallic acid, quercetin and BHT. Therefore, the TEAC (Trolox Equivalent Antioxidant 

Capacity) term refers to a normalization made in method results from a calibration curve 

made with Trolox data (Branina et al., 2019). 

 

Figure 3: Some chemical structures of standard antioxidant molecules. 
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Source: Authors (2023). 

 

Most used in vitro methods  

DPPH 

This method is based on measuring the antioxidant ability of a substance to 

sequester the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical by reducing it to hydrazine 

(DPPH-H) (Figure 4). DPPH is a stable, violet-colored, organic nitrogen radical that has 

absorption in the range 515-520 nm. The reduction of the DPPH radical is monitored by 

the decrease in absorbance after reacting with the antioxidant substance(s) in the sample 

to a light-yellow color. The color change is stoichiometric and depends on the number of 

electrons and hydrogens captured in the SET-HAT sequence, so the color change can be 

from decreasing in intensity from purple to producing a light yellow. The absorbance 

reading should occur exactly 30 minutes after the start of the reaction in a light-free 

environment (Blois, 1958; Akar et al., 2017).  

The IC 50 is a way to express the Capture Index (CI) of the reductant (antioxidant 

substance) by the DPPH radical. The IC50 expresses the sample concentration capable of 

reducing the radical by 50%. the higher the calculated IC50 value, the lower the 

antioxidant activity, because a high sample concentration is required to halve the DPPH 

radical.  To calculate the IC50, it is necessary that multiple dilutions of the sample be 

made and a linear concentration regression curve be constructed. The use of sample 
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concentration curves is one more criterion that can be added to all methods to ensure 

linearity over the concentration range used (Shimamura et al., 2014). 

 

Figure 4: Chemical reaction of DPPH with an antioxidant.  

 

Source: Authors (2023). 

 

ABTS (TEAC: Trolox Equivalent Antioxidant Capacity) 

This method is based on the generation of ABTS●+ , which has a blue-green (dark) 

color, through reaction with potassium persulfate (Figure  5). With the addition of an 

antioxidant contained in the sample, the reduction of ABTS●+ to ABTS occurs, promoting 

the loss of the coloration of the reaction medium to a greenish-yellow (light green) tone. 

the method is based on the ability of the substances present in the sample to inactivate the 

ABTS●+ radical in a given time (6 minutes). The ABTS●+ solution should be stored in a 

dark place at room temperature for 12 to 16 hours before use. The absorbance reading is 

taken at 734 nm. The percentage of ABTS●+ inhibition is calculated and transformed to 

Trolox Equivalent using trolox, a standard correlated to vitamin E, which is subjected to 

the same conditions as the antioxidant analysis by means of a calibration curve.  The 

results are expressed as TEAC (Trolox Equivalent Antioxidant Capacity). The final 

TEAC unit is expressed as µmol of Trolox /g of sample (Miller and Rice-Evans, 1997).  

It is important to check the absorbance of the ABTS●+ solution throughout all 

readings due to the instability of the radical. If necessary, the concentration should be 

adjusted to absorbance values of up to 0.8 ± 0.02. Concentration adjustment is done by 

dilution with 95% ethanol or by concentrating from the solution of the ABTS+ radical 

until the reading is in the original solution range. This check should be repeated at every 

third reading of samples, blank, and at the curve reading (all prepared in triplicate) 

(Olszowy and Dawidowicz, 2018). 
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Figure 5: Chemical reaction of stabilization of the ABTS●+ radical. 

 
 Source: Authors (2023). 

 

ORAC (Oxygen Radical Antioxidant Capacity) 

The technique for measuring antioxidant activity by the ORAC (Oxygen Radical 

Absorbance Capacity) method is based on the generation of a peroxyl radical (ROO.) by 

degradation of the reagent AAPH (2,2'-azobis-(2-methylpropaneamidine) at pH 7.4 at 

37oC in the reaction medium (Figure 6A). The ORAC method has the advantage of 

producing a biological radical that approximates the in vitro reaction to the biological 

process. Without the presence of antioxidants in the medium, the generated peroxyl 

radical would be stabilized by the presence of a fluorescent probe (fluorescein) that would 

donate a proton to it and be consumed without fluorescing (Figure 6B). In the presence 

of an antioxidant compound or antioxidant mixture from the food, the fluorescence 

consumption does not occur because the oxidizing compounds are consumed in the 

preferential reaction with the peroxyl radical. The fluorescent probe begins to react with 

the radical when this oxidizable substrate no longer exists in the medium, and also 

becomes consumed, decreasing the fluorescence signal over time on the kinetic curve 

(Figure 6C). The peroxyl radical is able to react with both the oxidizable substrate and 

fluorescent probe, increasing the rate of fluorescence decay as the oxidizing substrate is 

consumed (Zhong and Shahidi, 2015).  

Fluorescence is measured at 485 nm (excitation) and 535 nm (emission) and a 

kinetic curve with 90 measurements per minute performed on a black colored microplate. 

It is necessary to integrate the consumption curve of the flurescein probe for both standard 

(trolox curve) and samples (Figure 7). Thus, the result is obtained by calculating the area 

under the curve (AUC) of fluorescence and is expressed as equivalent to micromoles of 

Trolox per mL (for beverages) or per g of sample - TEAC (Brescia, 2012). 
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Figure 6 (A B, C): Steps of the chemical reactions involved in the determination of antioxidant 

activity by ORAC. 

 

Source: Authors (2023). 

 

Figure 7: Examples of AUC-type curves for standard and samples in the ORAC method. 

 

 

Source: Authors (2023). 

 

Other biological radicals in the ORAC method 

In addition to the original ORAC assay using the peroxyl radical, there are ORAC 

assays that have been developed using other radicals (individually or in groups) such as: 

ROS with superoxide anion (O2--), hydroxyl radical (OH-) and singlete oxygen (1O2). 

There is also RNS, peroxynitrite (ONOO-) and even a reactive chlorine species (RCS), 
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hypochlorite (ClO-). These multi-radical assays at the same time are called the Oxygen 

Radical Absorbance Capacity of Multiple Radicals (ORACMR), which is the sum of the 

antioxidant capacity of these six evaluated species. Another commercially available 

ORAC multi radical test, in this case without the chlorine radical species, is ORACMR5 

(Prior, 2015).  

 

FRAP (Ferric Reducing Ability Power) 

The reagent TPTZ (2,4,6 - tripyridyl - 1,3,5 - triazine) forms a complex with iron 

and estimates the ability of antioxidants to reduce the complex [Fe+3(TPTZ)2] to the 

complex [Fe+2(TPTZ)2] at pH 3.6 (Figure 8). In the FRAP assay, the reduced complex 

formed in the presence of antioxidants shows blue coloration and the absorbance of the 

solution is measured at 595 nm, allowing monitoring of the reducing activity of the 

sample. Chelating agents in the sample can capture the iron ions from the complex with 

the TPTZ and interfere with the analysis. Therefore, it is important to use excess Fe+3 

ions in the reaction medium (Benzie and Strain, 1999).  

 

Figure 8: Chemical reaction of the FRAP method. 

Source: Authors (2023). 

 

Folin Ciocalteu (total phenolics)  

The Folin-Ciocalteau reagent is a solution consisting of a mixture of 

phosphotungstic acid (H3PMo11O4) and phosphomolybdic acid (H3PW11O4) with a 

yellow color. When in the presence of the phenolate ion (from phenolic compounds), the 

phosphotungstic-phosphomolybdic complex is reduced to a mixture of blue colored 

tungsten and molybdenum oxides. The color change of the solution is proportional to the 

content of phenolic compounds. The concentration of phenols is correlated with the 
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standard curve of gallic acid, which is used as the equivalence standard. The results are 

expressed as gallic acid equivalents (GAG). Figure 9 shows the deprotonation of gallic 

acid in alkaline medium, followed by reaction with molybdenum, a constituent of the 

Folin-Ciocalteu reagent. This method can overestimate the values of total phenolics, 

because proteins, carbohydrates, and minerals can also participate in the reaction. So, 

some authors consider that the measure is antioxidant capacity of all of these molecules 

(Sánchez-Rangel et al., 2013). 

 

Figure 9: Chemical reaction of the Folin-Ciocalteau method (total phenolics) for molybdenum 

salt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Source: Authors (2023). 

 

Electrochemistry methods 

In Electrochemical antioxidant capacity methods, the samples are oxidized by 

applying a variable potential. The electrons are released from the antioxidant species and 

detected as a current at an electrode. New portable electrochemical devices are now used, 

making the sample preparation and operating system very easy, like BRS® from BQC 

Redox Technologies (Pisoschi et al., 2015, Al-Surhanee and Ameena, 2022).  

 

FINAL CONSIDERATIONS  

In conclusion, the evaluation of antioxidant activity through in vitro methods 

presents both advantages and challenges. These methods serve as valuable tools for 

assessing the potential health benefits of antioxidants in various food sources and 

ingredients, besides, biological fluids. Today the selection of methods for determining 
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antioxidant/oxidant activity in foods is based on trying to produce as much information 

as possible, using SET and HAT techniques.  

The difficulty of access to specific instrumentation such as fluorimeters, 

UV/Visible spectrophotometers, and adapted liquid chromatographs, among others, is the 

bottleneck to the choice of techniques; as well as the unambiguous interpretation of results 

and a more economical and less laborious methods.  

The techniques that produce biological radicals have also become an advantage 

and the antioxidant properties in cell culture may be an in vivo approach, complementary 

to the in vitro data obtained. However, the lack of standardization poses a significant 

hurdle. The multitude of available assays with differing mechanisms and outcomes 

complicates the comparison of results across studies. This lack of uniformity diminishes 

the clarity and comparability of measurement outcomes, which in turn hampers the 

formation of consistent conclusions. 

Furthermore, in vitro, methods are inherently limited in their ability to replicate 

the complex interactions that occur within the human body. The absence of dynamic 

enzymatic and biological processes that influence antioxidant behavior in vivo means that 

these assays might not accurately predict real-world health outcomes. Despite these 

limitations, in vitro, methods remain invaluable tools in the initial assessment of 

antioxidant potential. They provide researchers with a preliminary understanding of the 

capacity of substances to neutralize harmful radicals. To enhance the reliability and 

applicability of in vitro assays, efforts toward standardization and the integration of 

multiple techniques should be pursued.  

In the broader context of research, the combined use of in vitro, in vivo, and even 

clinical studies offers a more comprehensive and reliable approach to understanding the 

true impact of antioxidants on health. It is expected that the combination of the 

antioxidant assays may, in the future, result in more consolidated information to produce 

precise data about the balance of antioxidants for health promotion, ingested from food. 
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