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ABSTRACT 

 

 Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae has affected rice 

production in tropical to sub-tropical countries. In Indonesia, it is one of the most important diseases of 

rice. This study sought to develop an inexpensive and accurate method of assessing BLB damage using 

remote sensing technology. The field assessments were conducted in Cianjur, West Java, Indonesia in 

2017 and 2018. Visual assessments of disease severities were scored, and GPS coordinates of each 

sample plot were recorded. The potential of using spectral data from earth-observing Sentinel-2 

satellites was explored in detecting BLB damages. Correlations between BLB severities and spectral 

indices proposed in related studies were evaluated, revealing that all bands of Sentinel-2A except Band 

10 can potentially be useful for BLB damage detection. The visible, red-edge, near-infrared, and 

shortwave infrared regions may be usable for discriminating healthy rice plants from BLB damaged 

plants. BLB severities were strongly correlated with spectral index values, and four indices, BLB Index 

1, Green Red Edge index, and Disease-Water Stress indices 1 and 2, in addition to two common 

vegetation indices of Normalized Difference Vegetation Index and Ratio Vegetation Index, were 

practically applicable for estimating the BLB severities. 
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INTRODUCTION 

 

Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae, is one the most 

common diseases of rice in the tropical to subtropical zones worldwide, especially in Asia, causing 

significant losses to key production areas (IRRI 2017; Mew et al. 1993; Swings et al. 1990). BLB 

symptoms first appear as chlorosis at the leaf tips then wavy yellow to brown lesions progress toward 

the leaf base which eventually turn greyish-white (IRRI 2017). Field patches infested with bacterial 

blight have a whitish, ragged appearance.  In Indonesia, BLB was first observed in 1948-49 in Bogor, 

West Java and was called “kresek” (Reitsma and Schure 1950). It is now considered as a threat to 

Indonesian rice production (FAO 2019). In 2008, 3.87% of annual rice production in Indonesia or 

approximately 2.33 million metric tons was lost due to flood, drought, pests, and diseases (Pasaribu, 
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2010). To protect the farmers from these risks, a new Indonesian law was passed in 2013, called Farmer 

Protection and Empowerment Act to implement crop insurance nationwide (Pasaribu 2016). BLB is 

one of the main causes of crop loss listed for crop insurance indemnity claims in Indonesia (FAO 2019). 

Farmers could make an insurance claim only if the damage intensity reached level of 75% or above; 

and the extent of damage reaches minimum 75% of total area of the insured crop (Pasaribu 2016). Pest 

observers are tasked to monitor the incidence and severity of pest and disease damages to facilitate crop 

insurance claims. Pest monitoring sometimes only cover limited area and estimating the extent of 

damage over large rice production areas may not be possible or would be very time consuming. In 

Indonesia, many rice paddies are small and contiguous in communities that are not readily accessible 

due to the rugged terrain and limited road networks. This situation has made disease and pest 

observation and assessment even more challenging. Hence, remote sensing technology may be 

considered as one of the components of damage monitoring for crop insurance policy claims and risk 

assessment strategy formulation (Gogoi et al. 2018; Martinelli et al. 2015). Utilization and adoption rate 

of remote sensing technology with either multispectral or hyperspectral imagery for agriculture and 

environmental management has been increasing (Cordova et al. 2012; George 2000; Haack and Ryerson 

2016).  

 

In crop production, remote sensing involves measurement of reflectance of electromagnetic 

radiation from vegetation area in the visible (390 to 770 nm), near-infrared (NIR, 770 to 1300 nm) or 

middle-infrared (1300 to 2500 nm) regions (Mahlein et al. 2013; Reynolds et al.  2012). In remote 

sensing, surface reflectance values from satellite or airborne imagery are extracted and correlated to 

ground truth data (Calderon et al. 2013; Reynolds et al. 2012). Relevant broad bands or specific 

wavelengths can be selected for spatial pattern generation, followed by computing spectral or vegetation 

indices. Such indices have been used for estimating chlorophyll content, canopy density and leaf area 

index as well as detecting plant diseases at canopy, field, and regional scale (Apan et al. 2010; Calderon 

et al. 2013; Mahlein et al. 2013; Mirik et al. 2011; Reynolds et al. 2012; Singh et al. 2012; Yang 2010).  

Hongo et al. (2015) developed a damage assessment method of rice crop for agricultural insurance using 

SPOT (Satellite Pour l’ Observation de la Terre) 5 satellite data. Other satellite products also detect 

BLB damage such as Indian Remote Sensing Satellite with Linear Imaging and Self Scanning sensor 

(LISS IV) (Das et al. 2015) and RapidEye Satellite (Berlin, Germany) (Hongo et al. 2017). Canopy-

level measurements of hyperspectral reflectance from rice plants affected by BLB were also conducted 

(Hongo et al. 2017; Singh et al. 2012; Yang 2010;).  

 

In this study, we attempted to detect BLB using Sentinel-2 satellite products (European Space 

Agency, ESA, Frascati, Italy). Sentinel-2 is designed to provide open access multispectral images that 

can be processed to distinguish between different crop types as well as data on leaf area index, leaf 

chlorophyll content and leaf water content for accurate monitoring of plant growth (ESA 2019). We 

aimed at developing an inexpensive and accurate method of assessing BLB severity using Sentinel-2 

Multispectral Instrument (MSI) satellite imagery by searching the most relevant band as well as spectral 

indices, and by surveying rice paddies with BLB incidence. This is the first study to use Sentinel-2 

satellite data in discriminating different levels of BLB severity.  

 

MATERIALS AND METHODS 

 

Field assessment.  The field assessment was conducted in Cianjur, West Java Province, Indonesia, 29 

July–3 August, 2017 and 24–27 September, 2018. Site selection was done with the assistance from the 

local pest observers and rice farmer coordinators. A total of six sites in 2017 and four sites in 2018 (Fig. 

1) were identified as main sampling sites which represented the rice producing villages in the locality. 

Rice paddies with different levels of BLB severity from flowering to ripening stage were sampled. In 

each site, sampling on contiguous rice fields were conducted with the assistance from an experienced 

pest observer using sampling method described by Delp et al. (1986).  In 2017, single rice-hills were 

sampled across paddy field diagonally with a total of 10 rice-hills per sampling area. The 10 rice-hills 



J. ISSAAS Vol. 26, No. 1: 1-16 (2020) 

3 

 

per paddy field were grouped as one cluster. Each sampling area is approximately 30 m across. In 2018, 

3 rice-hills per 1 m2 sample plot were randomly selected across the paddy field. Five sample plots or a 

total 15 rice-hills per paddy field were grouped as one cluster. Geographical coordinates of the sampled 

rice-hills were recorded using Garmin eTrex 30xJ (GPS) device (Olathe, Kansas, USA). 

 

 
 

Fig. 1. Location of the field assessments (inset a) conducted in Cianjur, West Java, Indonesia in 2017 

(★) and 2018 (*). Actual geospatial position (inset b) of sample plots across rice paddy fields in Sukatani 

(Location 1) are shown in white dots. 

 

The disease severity of BLB was determined by estimating the percentage of infected surface 

area of rice leaves, and scored each hill based on the manual released by the Indonesian Crop Protection 

Bureau. For BLB, a scale of 0 to 9 was adopted and rice-hills were scored based on the size of lesion 

according to the followings, 0: no lesions observed; 1: >0 to 5%; 3: >5 to 25%; 5: >25% to 50%; 7: 

>50% to 75%; and 9: >75%. The following formula was used for computing the disease severity index 

per sample plot or paddy field:  

 

Disease severity index (DSI) = Σ[(number of rice-hills at the scale)/(total number of hills x 9)]×100 

 

Satellite data acquisition. Multi-spectral images from Sentinel-2A satellite acquired on July 24, 2017 

and September 27, 2018 were downloaded from the US Geological Survey website as open access 

products using the Earth Explorer platform (USGS, Reston, Virginia, USA). These are the products 

acquired with least clouds and closest to the field survey dates. Since only Sentinel-2A satellite data 

products were used in this study, satellite bands discussed herein are all Sentinel-2A as shown in Table 

1. Sentinel-2B satellite flight dates did not coincide with the dates of field assessments.  
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Table 1. Description of multi-spectral instrument (MSI) sensors of the Sentinel-2Aa 

 

Sentinel-2A Band name Central wavelength (nm) Bandwidth (nm) Resolution (m) 

B1 - Coastal aerosol 442.7 21 60 

B2 - Blue 492.4 66 10 

B3 - Green 569.8 36 10 

B4 - Red 664.6 31 10 

B5 - Vegetation Red Edge 704.5 15 20 

B6 - Vegetation Red Edge 740.5 15 20 

B7 - Vegetation Red Edge 782.8 20 20 

B8 - Near-infrared 832.8 106 10 

B8A - Near-infrared (narrow) 864.7 21 20 

B9 - Water vapor 945.1 20 60 

B10 - Shortwave Infrared-Cirrus 1373.5 31 60 

B11 - Shortwave Infrared 1613.7 91 20 

B12 - Shortwave Infrared 2202.4 175 20 

a Source: ESA (2019) 

 

Satellite product processing.  Sentinel Application Platform (SNAP version 6.0.5), a GIS program 

developed by the European Space Agency for Sentinel data processing, was used in atmospheric 

correction, vegetation indices computation and band combination. The ArcMap (version 10.5, ESRI, 

California, USA), a main component of ArcGIS developed by Environmental Systems Research 

Institute (ESRI), was used in viewing multi-spectral images and index maps and extracting geospatial 

data. ArcMap was also used in generating geographic information system (GIS) maps showing BLB 

spatial pattern. 

Atmospheric correction.  The Sentinel-2A images were pre-processed for atmospheric correction 

using the Sentinel-2 Atmospheric Correction (Sen2Cor) Processor (ver. 255, ESA, Frascati, Italy) in 

the SNAP toolbox (ver. 6.0.5, ESA, Frascati, Italy). This process includes the conversion of Top-of-

Atmosphere (TOA) reflectance (Level-1C image) to Bottom-of-Atmosphere (BOA) or surface 

reflectance, a Level-2A output (ESA, 2018; Louis et al. 2016). Surface reflectance is the measure of 

reflectance on the surface of the ground whereas Top-of-Atmosphere (TOA) reflectance is the measure 

of reflectance at the sensor. Correction process removes atmospheric distortions. Sen2Cor also performs 

the terrain and cirrus correction. Sen2cor parameters was set to ‘0’ ozone content (default for auto), 

‘Auto’ for Aerosol, ‘Auto’ for Mid-Latitude (automatic cirrus correction), 40 km visibility (default), 

and altitude set to 300 m (mean altitude of the target area) as inputs. The process generated atmosphere-

corrected products at 60 m, 20 m, and 10 m resolutions.  

 

Resampling and vegetation indices generation.  For all bands involved in the indices or band math 

computation, low resolution raster data layers were resampled from 60 m and 20 m to the highest 

possible resolution (10 m) using the SNAP resampling processor to allow band combination. 

 

A spectral or vegetation index is generated by combining data from multiple spectral bands 

into a single value. The detailed formula as well as the sources of spectral indices used in this study 

were shown in Table 2. The spectral indices were calculated using Sentinels Application Platform 

(SNAP version 6.0.5) algorithm for automatic radiometric index processing. In some equations, 

resampling was done to produce same band resolution. All spectral indices auto-generated using the 

SNAP were computed using 1.0 factor value for each band in each equation.  
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Table 2. Spectral indices assessed for correlation with disease severity indices (DSI) of bacterial leaf 

blight (BLB) from paddy fields surveyed in Cianjur, West Java, Indonesia 

Indicesa  SNAP index processor and Band Math formula 

using Sentinel-2A bandsb  

References 

NDVI (B8–B4)/(B8+B4) Rouse et al. (1974) 

  SAVI (1+L)*(B8–B4)/(B8+B4+L), where L is a canopy background 

adjustment factor  

Huete (1988) 

MSAVI 1 (1+L)*(B8–B4)/(B8+B4+L) 

where: L = 1–2*s*NDVI*WDVI, and s is the soil line slope 

Qi et al. (1994) 

MSAVI 2 (1/2)*(2*(B8+1)–sqrt[(2*B8+1)*(2*B8+1)–8*(B8–B4)] Qi et al. (1994) 

DVI B8–B4 Richardson and Wiegand 

(1977) 

RVI R795/R675 or B8/B4  Major et al. (1990);  

ESA (2018) 

PVI sin(a)*B8–cos(a)*B4 Richardson and Wiegand 

(1977) 

IPVI B8/(B8+B4) Crippen (1990) 

WDVI B8–g*B4 Clevers (1988) 

TNDVI sqrt[(B8–B4)/(B8+B4)+0.5] Senseman et al. (1996) 

GNDVI (B8–B3)/(B8+B3) Gitelson et al. (1996) 

GEMI eta*(1–0.25*eta)–(B4–0.125)/(1–B4), 

  where, eta = (2*(B8*B8–

B4*B4)+1.5*B8+0.5*B4)/(B8+B4+0.5) 

Pinty and Verstraete (1992) 

ARVI (B8–rb)/(B8+rb),  

  where rb=(B4)–gamma*(B2–B4), with gamma=1 

Kaufman and Tanre (1992) 

NDI45 (B5–B4)/(B5+B4) Delegido et al. (2011) 

MTCI (B6–B5)/(B5–B4) Dash and Curran (2004) 

MCARI [(B5–B4)–0.2*(B5–B3)]*(B5–B4) Daughtry et al. (2000) 

REIP  700+40*[(B4+B7)/2–B5]/(B6–B5) Guyot and Baret (1988) 

S2REP 705+35*[(B4+B7)/2–B5]/(B6–B5) Guyot and Baret (1988) 

IRECI (B7–B4)/(B5/B6) Guyot and Baret (1988) 

PSSRa B7/B4 Blackburn (1998) 

SR8A4 B8A/B4 Jordan (1969) 

GRE  Green*Red Edge or B3*B5 Hongo et al. (2017) 

HI [(R543–R698)/(R534+R698)]–½(R704) or (B3–

B5)/(B3+B5)–½(B5) 

Mahlein et al. (2012) 

DWSI1 R800/R1660 or B8/B11  Apan et al. (2004) 

DWSI5 (R800+R550)/(R1660+R680) or (B8+B3)/(B11+B4) Apan et al. (2004) 

CLSI (B4–B3)/(B4+B3)–B6 Mahlein et al. (2012) 

BLB1 (B8A+B3)/(B12+B4) This study 

BLB2 B11/B4 This study 
 a NDVI = Normalized Difference Vegetation Index; SAVI = Soil Adjusted Vegetation Index; MSAVI = Modified 

Soil Adjusted Vegetation Index; MSAVI = second Modified Soil Adjusted Vegetation Index; DVI = Difference 

Vegetation Index; RVI = Ratio Vegetation Index – RVI; PVI = Perpendicular Vegetation Index; IPVI = Infrared 

Percentage Vegetation Index; WDVI = Weighted Difference Vegetation Index; TNDVI = Transformed 

Normalized Difference Vegetation Index; GNDVI = Green Normalized Difference Vegetation Index; GEMI = 

about:blank../wdvi/WdviAlgorithmSpecification.html
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Global Environmental Monitoring Index; ARVI = Atmospherically Resistant Vegetation Index; NDI45 = 

Normalized Difference Index; MTCI = Meris Terrestrial Chlorophyll Index; MCARI = Modified Chlorophyll 

Absorption Ratio Index; REIP = Red-Edge Inflection Point Index; S2REP = Sentinel-2 Red-Edge Position Index; 

IRECI = Inverted Red-Edge Chlorophyll Index; PSSRa = Pigment Specific Simple Ratio (chlorophyll index); 

SR8A4 = Simple Ratio Band 8A*Band4; GRE = Green Red Edge index; DWSI = Disease and Water Stress 

Index; HI = Health Index; CLSI = Cercospora leaf spot index; BLB = Bacterial leaf blight index 
b Characteristics of Sentinel-2A bands (B4, B5, B6, B,7, B8, and B8A) are shown in Table S1, and R is reflectance 

wavelength (nm) 

 

Extraction of surface reflectance values from sample points (coordinates).  The ArcMap (version 

10.5, ESRI, California, USA) was used for viewing the satellite images and extracting geospatial data. 

Surface reflectance from Sentinel-2A bands acquired 24 July, 2017 and 27 September, 2018 were 

extracted to points or GPS coordinates of sampled rice-hills in paddy fields. 

 

Statistical data analyses.  Statistical analyses were conducted using JMP version 13 (SAS Institute, 

USA) and R software version 3.5.1 (R Foundation, Austria). Spearman’s rank correlation was used for 

determining the strength of relationship between BLB severity scores per rice-hill and reflectance values 

of the Sentinel-2A bands which derived spectral indices. Pearson’s correlation, on other hand, was used 

to analyse the relationship between means of BLB severity index (DSI) per plot and reflectance values 

of the Sentinel-2A bands which derived spectral indices. Analyses of variance (ANOVA) followed by 

multiple comparisons between treatments using the Tukey’s Honestly Significant Difference (HSD) 

test was performed to determine the sensitivity of Sentinel-2A bands or sensors and the spectral indices 

to discriminate the different levels of BLB severity. To simplify the analysis, DSI values from sampled 

plots were grouped as I , initial (DSI < 25%); L, low (DSI = 25 to 49); M, moderate (DSI = 50 to 74%); 

and S, severe (DSI = 75 to 100%). 

 

RESULTS AND DISCUSSION 

 

Field assessments.  A total of 22 paddy fields were assessed in six locations in 2017 whereas 30 paddy 

fields were assessed in four locations in 2018. In 2017, recorded BLB severity scores of sampled rice-

hills ranged from 0 to 7 with highest frequency recorded at score of 5 (Fig. 2). In 2018, BLB score of 1 

had the highest frequency and recorded scores ranged from 1 to 7 (Fig. 2). In general, disease severity 

of BLB was lower in 2018 than in 2017 because most of the rice fields surveyed in 2017 were at ripening 

phase whereas rice fields surveyed in 2018 varied from flowering to ripening stages. Rice plants showed 

severe symptoms towards maturity as more leaves became infected. 

 
Fig. 2. Frequency distribution of BLB severity scores of each sampled rice-hill in 2017 and 2018 

field assessments conducted in Cianjur, West Java, Indonesia. 

 

Relationship between surface reflectance values of Sentinel 2-A bands and BLB severity.  

Correlation analyses revealed that all the bands of Sentinel-2A, except Band 10, had significant 

correlation with BLB disease severity gradient (Table 3). Band 4 (red, 665 nm) was the most relevant 

and had the strongest correlation coefficient of 0.81 with the mean DSI of 10-hill plot in 2017. In 2018, 
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however, Band 5 (red edge, 705 nm) was the most relevant to BLB gradient with correlation coefficient 

of 0.72 and 0.84 for 3-hills and 15-hills DSI means, respectively (Table 3). Band 4 (red) and Band 3 

(green) also had strong correlation with BLB whereas the correlation between Band 6 (red edge, 740 

nm) and BLB gradient was moderate in 2017, and weak in 2018. Band 1 (443 nm) which is designed 

for sensing shallow water habitat had the weakest correlation with BLB gradient in 2018. Reflectance 

values in the visible region (Bands 1 to 5) and shortwave infrared region (Bands 11 and 12) tended to 

increase as BLB severity increases, whereas values at the red edge region (Bands 6 and 7) and near-

infrared region (Bands 8, 8A, and 9) tended to show the opposite movement (Table 3).  

 

Table 3. Correlation between surface reflectance values of Sentinel 2-A bands and disease severity 

indices (DSI) of bacterial leaf blight (BLB) in paddy fields (2017 and 2018, Cianjur, West Java, 

Indonesia) 

Sentinel-

2A Bands 

2017 DS score 

per hilla 

2017 Mean DSI of 

10 adjacent hillsb 

2018 Mean DSI of 

3 adjacent hillsc 

2018 Mean DSI of 

15 adjacent hillsd 

1 0.57**e 0.75** 0.26** 0.31ns 

2 0.55** 0.76** 0.54** 0.65** 

3 0.56** 0.72** 0.67** 0.81** 

4 0.64** 0.81** 0.65** 0.78** 

5 0.58** 0.70** 0.72** 0.84** 

6 -0.43** -0.63** -0.34** -0.42* 

7 -0.52** -0.73** -0.51** -0.62** 

8 -0.52** -0.70** -0.47** -0.57 ** 

8A -0.50** -0.71** -0.45** -0.56** 

9 -0.58** -0.80** -0.48** -0.56** 

10 n/af n/a n/a n/a 

11 0.61** 0.67** 0.33** 0.45* 

12 0.64** 0.72** 0.43** 0.56** 
a Correlation coefficient values from Spearman’s rank correlation between BLB disease severity scores per rice-

hill and the Sentinel-2A bands’ reflectance values (satellite image acquired on July 24, 2017) 
b Correlation coefficient values from Pearson’s correlation between BLB disease severity index per plot of 10 

adjacent rice-hills sampled across a rice paddy field (10m – 20 m across) and the Sentinel-2A bands’ 

reflectance values (satellite image acquired on July 24, 2017). Disease severity index (DSI) = Σ[(number of 

rice-hills at the scale)/(10 hills×9)]×100 
c Correlation coefficient values from Pearson’s correlation between BLB disease severity index per plot of 3 

adjacent rice-hills sampled within a 1m2 area and the Sentinel-2A bands’ reflectance values (satellite image 

acquired on Sept. 27, 2018). Disease severity index (DSI) = Σ[(number of rice-hills at the scale)/(3 hills×9)] 

×100 
d Correlation coefficient values from Pearson’s correlation between mean BLB disease severity index of 15 

adjacent rice-hills from 5 sampled plots within the same paddy field and the Sentinel-2A bands’ reflectance 

values (satellite image acquired on Sept. 27, 2018). Disease severity index (DSI) = Σ[(number of rice-hills at 

the scale)/(15 hills×9)]×100 
e Notation for the probability level (p-value) for the analysis of variance: ** for p<0.01; * for p<0.05 and ns for 

p>0.05 
f  n/a, not applicable. Band 10 was excluded since reflectance values were used in cirrus cloud correction 

 

This is the first study that attempted to utilize Sentinel-2 satellite data to differentiate various 

levels of BLB severity. Sentinel-2 satellite data are freely accessible while satellite products of LISS IV 

and RapidEye used in previous studies (Das et al. 2015; Hongo et al. 2017) are not free. Moreover, 

Sentinel-2 has visible (VIS) and near-infrared (NIR) bands with 10 m spatial resolution which is higher 

than other free access satellite products such as Landsat 8 of NASA/USGS with 30 m resolution for 

visible and NIR regions and 15 m for panchromatic band. Overall, correlation coefficients between 

BLB severities and Sentinel-2A bands were higher when the means of DSI in 2017 and in 2018 were 

fitted against the means of the reflectance values.  
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In terms of band sensitivity to discriminate BLB severity, Bands 1 (coastal aerosol), 2 (blue), 

3 (green), 4 (red) and 5 (red edge) of the visible region of spectrum significantly separated the severity 

ranks. Shortwave infrared regions covered by Bands 11 and 12 also significantly separated the severe 

BLB from low and moderate disease severities (Table 4). Our results agree with Apan et al. (2004) 

indicating that incorporation of SWIR band (1660 nm) in disease indices provided the maximum 

discrimination between disease and non-diseased sugarcane plants. Vegetative red edge region (Bands 

6 and 7) and NIR (Bands 8 and 8A) were moderately sensitive in discriminating severe from moderate 

level but could still be relevant and significantly separate initial and low levels of BLB severity from 

more severe cases.   

 

Table 4. Sensitivity of Sentinel-2A bands to disease severity indices (DSI) of bacterial leaf blight 

(BLB) in paddy fields a. 

Sentinel-2A 

Bands 
Fb p-valueb 

Level of BLB severityc 

I L M S 

1 44.01 <0.001 7.73a 8.27b 8.50c 8.89d 

2 42.97 <0.001 7.16a 7.62b 7.88c 8.20d 

3 38.54 <0.001 9.03a 9.48b 9.74c 10.11d 

4 55.44 <0.001 7.10a 8.09b 8.60c 9.17d 

5 37.82 <0.001 11.71a 12.46b 12.89c 13.58d 

6 33.98 <0.001 22.50a 21.22b 20.96b 21.11b 

7 54.79 <0.001 27.20a 24.93b 24.36c 24.55bc 

8 40.46 <0.001 26.50a 24.64b 23.98c 24.17bc 

8A 45.41 <0.001 29.35a 27.19b 26.60c 26.72bc 

9 77.50 <0.001 25.60a 23.58b 22.95c 22.82c 

11 34.30 <0.001 15.89a 16.69b 17.21c 18.68d 

12 39.00 <0.001 8.83a 9.77b 10.31c 11.44d 

a Reflectance values were extracted from atmosphere-corrected Sentinel-2 imagery obtained on 24 July, 2017 

covering the Cianjur, West Java, Indonesia site 
b F statistic and p-value obtained from the analysis of variance (ANOVA) 
c Mean comparison of DSI levels of BLB according to Tukey’s HSD. Means with same letter in each row are not 

significantly different at p<0.05. Levels of DSI per rice-hill are described as I – initial (DSI < 25), L – low (DSI 

= 25 to 49); M – moderate (DSI = 50 to 74), and S – severe (DSI = 75 to 100) 

 

Surface reflectance difference between BLB infected and healthy rice plants at canopy level 

measurements was high at green and red edge regions. In general, BLB infection on mature rice plants 

results in chlorosis as an initial symptom (Hongo et al. 2017). As infection advances, lesions form, and 

leaves start to turn brown and eventually wilt. Many studies indicated that visible region particularly 

the green, in addition to red edge, near-infrared and shortwave or mid-infrared regions may be relevant 

as these regions represent physiological change in plants (Caasi et al. 2019; Calderon et al. 2013; 

Knipling 1970; Mirik et al. 2011; Reynolds et al. 2012).  Reflectance values at the NIR region are 

usually higher than the other regions because of internal leaf scattering and no light absorption, whereas 

plant leaf typically has a low reflectance in the visible spectral region because of strong absorption by 

chlorophylls (Knipling 1970). There is a relatively low reflectance in the infrared beyond 1,300 nm 

because of strong absorption by water. When the chlorophyll content of infected plants decreases, 

higher reflectance is observed in the visible green and red edge regions (Calderon et al. 2015; Knipling 

1970; Mirik et al. 2011). On the other hand, infected or stressed plants usually show lower spectral 

reflectance in the NIR region as leaf structure is altered and canopy density, biomass and leaf area 

decrease (Calderon et al. 2013; Knipling 1970). Changes in middle-infrared reflectance region in water-

stressed sugar beet foliage was due to mixture of vegetation and soil background reflectance as the 

canopy of plants start to collapse (Reynolds et al. 2012). The highest separability between diseased and 

non-diseased sugarcane was in the NIR region (between 750 to 880 nm and 1070 nm) and followed by 

selected ranges in the SWIR particularly at 1660 nm and 2200 nm, green (550 nm) and red (680 nm) 
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regions (Apan et al. 2004). There is good correlation between BLB disease intensity and spectral 

reflectance from 325 to 1075 nm (Singh et al. 2012).  Hyperspectral canopy reflectance measurement 

of BLB-infected rice cultivars by Yang (2010) showed that for moderately susceptible rice cultivars, 

757 to 1039 nm were the most sensitive region of spectrum to BLB, whereas for highly susceptible 

cultivars, all the narrow bands are relevant. 
 

Relationship between spectral indices from Sentinel-2A bands and BLB severity.  Most 

of the spectral indices exhibited highly significant correlations with BLB severity gradients except for 

Modified Chlorophyll Absorption Ratio Index (MCARI) in 2018 field surveys (Table 5).  It is also 

noted that most of the spectral indices showed downward trend as the BLB severity increased, whereas 

Cercospora leaf spot index (CLSI) and Green Red Edge Index formula 1 (GRE) showed an upward 

trend (Table 5). Pigment Specific Simple Ratio chlorophyll-a (PSSRa), Ratio Vegetation Index (RVI), 

Simple Ratio (SR8A4) had the highest correlation with BLB severity gradient per 10-hill plot (r = -

0.84, p<0.01) in 2017 field survey (Table 5). Other spectral indices also showed highly significant 

(p<0.01) correlation with BLB severity gradient (mean DSI per 10-hill plot) such as Atmospherically 

Resistant Vegetation Index (ARVI, r = -0.83), Normalized Difference Index (NDI45, r = -0.83), 

Inverted Red-Edge Chlorophyll Index (IRECI, r = -0.83), Normalized Difference Vegetation Index 

(NDVI, r =  -0.82), Infrared Percentage Vegetation Index (IPVI, r = -0.82), and Transformed 

Normalized Difference Vegetation Index (TNDVI, r = -0.82). Soil Adjusted Vegetation Index (SAVI), 

Difference Vegetation Index, Green Normalized Difference Vegetation Index (GNDVI), Modified Soil 

Adjusted Vegetation Index (MSAVI), Second Modified Soil Adjusted Vegetation Index (MSAVI2) 

were also highly correlated to BLB severity (Table 5). In 2018 field survey (15-hill DSI), the highest 

correlation was found with Meris Terrestrial Chlorophyll Index (MTCI) (r = -0.84) followed by GRE 

(r = 0.83). 

 

Health index (HI), an index for detecting sugar beet foliar disease, had the strongest correlation 

with BLB severity gradient with a coefficient of -0.84 in 2018 (15-hill DSI) (Table 5). However, the 

correlation was lower in 2017 with a coefficient of -0.70 (10-hill DSI). In 2017, the Bacterial Leaf 

Blight index 1 (BLB1) proposed in this study had the strongest correlation with BLB severity gradient 

per 10-hill plot with r = -0.83 followed by Disease-Water Stress Index formula 5 with -0.82. BLB index 

2, on the other hand, had strong correlation with the BLB severity of 2018 with r = -0.81. DWSI 1 had 

moderate correlation with BLB (10-hill DSI) with r = -0.79 in 2017 and r = -0.62 in 2018 (15-hill DSI).  

 

Table 5. Correlation between spectral indices from Sentinel-2A bands and disease severity indices 

(DSI) of bacterial leaf blight (BLB) in paddy fields (2017 and 2018, Cianjur, West Java, Indonesia). 

Spectral 

Indexa 

2017 DS 

Score 

per hillb 

2017 Mean DSI 

per 10 adjacent 

hillsc 

2018 Mean DSI  

of 3 adjacent hillsd 

2018 Mean DSI of 

15 adjacent hillse 

NDVI -0.66** f -0.82** -0.61** -0.74** 

ARVI -0.67** -0.83** -0.65** -0.78** 

DVI -0.62** -0.80** -0.54** -0.65** 

GEMI -0.60** -0.79** -0.52** -0.63** 

GNDVI -0.62** -0.81** -0.62** -0.74** 

IPVI -0.66** -0.82** -0.61** -0.74** 

IRECI -0.62** -0.83** -0.63** -0.74** 

MCARI -0.51** -0.76** 0.11ns 0.17ns 

MSAVI -0.64** -0.81** -0.56** -0.67** 

MSAVI2 -0.64** -0.81** -0.56** -0.68** 

MTCI -0.53** -0.76** -0.69** -0.84** 

NDI45 -0.62** -0.83** -0.43** -0.55** 

PSSRa -0.65** -0.84** -0.64** -0.76** 

REIP -0.44** -0.64** -0.67** 0.65** 

RVI -0.66** -0.84** -0.63** -0.80** 
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Spectral 

Indexa 

2017 DS 

Score 

per hillb 

2017 Mean DSI 

per 10 adjacent 

hillsc 

2018 Mean DSI  

of 3 adjacent hillsd 

2018 Mean DSI of 

15 adjacent hillse 

S2REP -0.44** -0.64** -0.67** -0.80** 

SAVI -0.64** -0.81** -0.56 ** 0.68** 

TNDVI -0.66** -0.82** -0.61** -0.73** 

WDVI -0.58** -0.77** -0.51** -0.61** 

SR8A4 -0.65** -0.84** -0.63** -0.74** 

GRE 0.57** 0.71** 0.70** 0.83** 

HI -0.58** -0.70** -0.72** -0.84** 

CLSI 0.44** 0.64** 0.35** 0.44* 

DWSI1 -0.65** -0.79** -0.55** -0.62** 

DWSI5 -0.66** -0.82** -0.55** -0.66** 

BLB1 -0.65** -0.83** -0.57** -0.69** 

BLB2 -0.46** -0.68** -0.69** -0.81** 
a Sources and formula of spectral indices were shown in Table S2 
b Correlation coefficient values from Spearman’s rank correlation between BLB scores of rice-hills and the 

reflectance values of Sentinel-2A bands (satellite image acquired on 24 July, 2017) 
c Correlation coefficient values from Pearson’s correlation between BLB severity index per plot of 10 adjacent 

rice-hills sampled across a rice paddy field (10m – 20 m across) and the Sentinel-2A bands’ reflectance values 

(satellite image acquired on 24 July, 2017). Disease severity index (DSI)=Σ[(number of rice-hills at the scale)/(10 

hills×9)]×100 
d Correlation coefficient values from Pearson’s correlation between BLB severity index per plot of 3 adjacent rice-

hills sampled within a 1 m2 area and the Sentinel-2A bands’ reflectance values (satellite image acquired on Sept. 

27, 2018). Disease severity index (DSI)=Σ[(number of rice-hills at the scale)/(3 hills×9)]×100 
e Correlation coefficient values from Pearson’s correlation between mean BLB severity index of 15 adjacent rice-

hills from 5 sampled plots within the same paddy field and the Sentinel-2A bands’ reflectance values (satellite 

image acquired on 27 September, 2018). Disease severity index (DSI)=Σ[(number of rice-hills at the scale)/(15 

hills×9)]×100 
f Notation for the probability level (p-value) for the analysis of variance: ** for p<0.01; * for p <0.05; and ns for p 

>0.05 

 

Among the spectral indices, DWSI1, DWSI5, GRE and BLB1, were very sensitive and had 

significantly discriminated all the levels of BLB severity (p <0.05) (Table 6). Other spectral indices 

were less sensitive in separating the BLB severity levels as no significant differences were observed 

between the severe and moderate levels (Table 6). Nonetheless, most of these indices, except MCARI, 

could still be used to discriminate moderate and severe symptoms from lower levels.  

 

Table 6. Sensitivity of spectral indices from the Sentinel-2 bands to the disease severity indices (DSI) 

of bacterial leaf blight (BLB) in paddy fields. 

Spectral indexa Fb p-valueb 
DSI levels of BLB per rice-hillc 

     I        L      M      S 

NDVI 59.74 <0.001 0.58a 0.51b 0.47c 0.45c 

ARVI 57.66 <0.001 0.58a 0.49b 0.44c 0.42c 

DVI 58.88 <0.001 0.19a 0.17b 0.15c 0.15c 

GEMI 56.88 <0.001 0.66a 0.61b 0.60c 0.59c 

GNDVI 60.52 <0.001 0.50a 0.45b 0.43c 0.42c 

IPVI 59.34 <0.001 0.79a 0.75b 0.74c 0.73c 

IRECI 72.46 <0.001 0.39a 0.29b 0.26c 0.24c 

MCARI 23.16 <0.001 0.07a 0.06b 0.05c 0.05bc 

MSAVI 60.80 <0.001 0.30a 0.26b 0.24c 0.23c 

MSAVI2 61.98 <0.001 0.82a 0.77b 0.75c 0.74c 

MTCI 24.12 <0.001 2.36a 2.01b 1.95b 1.72c 

NDI45 37.91 <0.001 0.25a 0.21b 0.20c 0.19c 
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Spectral indexa Fb p-valueb 
DSI levels of BLB per rice-hillc 

     I        L      M      S 

PSSRa 74.56 <0.001 3.86a 3.13b 2.86c 2.70c 

REIP 17.52 <0.001 720.14a 718.24b 717.83b 717.64b 

RVI 71.27 <0.001 3.16a 3.10b 2.81c 2.67c 

S2REP 17.52 <0.001 722.63a 720.96b 720.60b 720.44b 

SAVI 60.34 <0.001 0.35a 0.30b 0.28c 0.27c 

TNDVI 57.46 <0.001 1.04a 1.00b 0.99c 0.98c 

WDVI 52.45 <0.001 0.23a 0.21b 0.20c 0.20c 

SR8A4 74.10 <0.001 3.76a 3.09b 2.81c 2.65c 

GRE 38.55 <0.001 105.92a 118.47b 125.91c 137.54d 

HI 37.50 <0.001 -11.38a -10.74b -10.62c -10.70c 

CLS1 35.53 <0.001 -22.62a -21.30b -21.02c -21.16c 

DWSI1 53.46 <0.001 1.67a 1.48b 1.40c 1.30d 

DWSI2 6.70 <0.001 1.76a 1.76b 1.77b 1.85b 

DWSI5 60.77 <0.001 1.55 a 1.38 b 1.31 c 1.24 d 

BLB1 66.98 <0.001 2.42a 2.07b 1.94c 1.80d 

BLB2 21.68 <0.001 0.98a 1.03b 1.06b 1.13c 

a Spectral indices were calculated from atmospheric corrected Sentinel-2 imagery obtained on 24 July, 2017 

covering the Cianjur, West Java, Indonesia. The equation formula are shown in Table S2 
b F statistic and p-value obtained from the analysis of variance (ANOVA) 
c Mean comparison of DSI levels of BLB according to Tukey’s HSD. Means with same letter in each row are not 

significantly different at p<0.05. Levels of DSI per rice-hill are described as I, initial (DSI < 25); L, low (DSI = 

25 to 49); M, moderate (DSI = 50 to 74); and S, severe (DSI = 75 to 100) 

 

Indices such as NDVI can be used to detect rice canopy symptoms and damage caused by 

various factors (Das et al. 2015; Ghobadifar et al. 2016; Hongo et al. 2015; Mirik et al. 2011; Singh et 

al. 2012). For example, changes in canopy density due to infection causes reduction in leaf reflectance 

at NIR, hence decreases the NDVI value of a certain vegetation. Indices such as Pigment Specific 

Simple Ratio (PSSRa and PSSRb), on the other hand, can detect anomalies in the chlorophyll content 

of plants due to infection (Calderon et al. 2013; Das et al. 2015). Plant with chlorosis for example would 

tend to increase in PSSR index value as chlorophyll content decreases since reflectance values at RGB 

region tend to increase when leaf chlorophyll abundance is low as more light is reflected than absorbed 

(Calderon et al. 2013; Das et al. 2015). Vegetation indices such as NDVI, SR (Simple Ratio), red edge, 

and OSAVI (optimized soil-adjusted vegetation index) were highly correlated to BLB severities on rice 

(Singh et al. 2012).  

 

The strong correlation between BLB severity and most of the spectral indices tested in this 

study such as NDVI, RVI, and ARVI showed the consistency of these indices as structural damage and 

canopy density indicators. The usefulness of structural indices as indicator of Verticillium wilt damage 

on olive trees (Calderon et al. 2013). Chlorophyll content indices such as PSSRa and GRE also showed 

consistency because of their sensitivity to changes in chlorophyll content of the leaves affected by BLB.  

 

The four highly relevant spectral indices, DWSI1, DWSI5, GRE and BLB1 were laid over the 

ESRI ArcGIS map of paddy fields in Sukatani, Cianjur, West Java, Indonesia, generating geo-spatial 

maps to exhibit the BLB severity across a wide swath of land (Fig. 3). In addition, two other common 

spectral indices, NDVI and RVI, were also used to create their GIS maps for comparison. All these 

spectral indices showed variation in the BLB severities, indicating their potential usability to estimate 

BLB severity. However, BLB1, DWSI1, DWSI5, NDVI, and RVI exhibited almost similar patterns of 

the disease severity, whereas the GRE index map showed a different pattern.  
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Fig. 3. GIS maps generated using BLB Index 1 (BLB1), Green Red Edge (GRE) index, Normalized 

Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), Disease and Water Stress Index 1 

(DWSI1) and Disease and Water Stress Index 5 (DWSI5) at 10 m resolution laid over the ESRI ArcGIS 

map of rice fields in Sukatani, Cianjur, West Java, Indonesia, showing variation in the indices values 

which can potentially estimate BLB severity. Actual geospatial position of sample plots across rice 

paddy fields are shown here as blue dots. 
 

The relationship between BLB and relative chlorophyll abundance in rice leaves in West Java 

was inversely correlated to SPAD values and had the highest correlation coefficient among rice diseases 

and pest damage observed in the field (Caasi et al. 2019). Moreover, BLB was the most dominant among 

the diseases observed which also included narrow brown spot, sheath blight, and rice blast and 

whitehead caused by stemborer. Whitehead, sheath blight and blast had low prevalence and did not 

affect rice chlorophyll content. Narrow brown spot appeared to be associated to severe BLB but had 

low correlation to chlorophyll reduction of the leaves nor the yield of the rice.  In a complex rice and 
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disease interactions with multi-infection scenario, it is difficult to accurately estimate BLB damage on 

rice using multispectral data since some diseases have similar symptoms and spatial patterns. 

Nevertheless, for the purposes of damage assessment of rice paddies for crop insurance claim, the 

method developed, and the information generated in this study will help in generating GIS maps that 

could provide spatial pattern of damage caused by BLB that may or may not include other diseases and 

pest damage. In the crop insurance policy being implemented in Indonesia, claims are based on total 

crop area damaged and do not require identification of specific natural cause (Pasaribu 2016). Hence, 

this method could still have practical use in the future.  
 

The next step would be to develop remote sensing system using hyperspectral sensors with 

higher spatial resolution whether from satellite system or attached to unmanned aerial vehicle or drone 

platforms (Yang 2010; Martinelli et al. 2015; Gogoi et al. 2018). However, the public have limited 

access to data from satellites with hyperspectral sensors and high spatial resolutions. Acquiring images 

are also expensive. UAV-based systems with multispectral or hyperspectral sensors are now currently 

being developed, however, commercial systems are still expensive (Yang 2010; Martinelli et al. 2015; 

Gogoi et al. 2018). Moreover, farmers and researchers in developing countries have limited access to 

hardware, software, and techniques for advance remote sensing (George 2000; Haack and Ryerson 

2016).  

 

CONCLUSION 
 

Most of the Sentinel-2 bands and spectral indices tested in this study are relevant to BLB 

detection. Disease indices such as Green Red Edge (GRE) index and Disease-Water Stress indices 

(DWSI1 and DWSI5) were found to be the most sensitive in separating the levels of BLB severity. 

Bacterial Leaf Blight index formula 1 (BLB1), NDVI and RVI were also relevant and sensitive in 

separating severe BLB damage from other levels. Sentinel-2 satellites sensors have the potential of 

detecting and estimating BLB damage. With additional relevant data and more parameters, geo-spatial 

maps generated with relevant bands and spectral indices could provide in the future useful geospatial 

information of rice paddies for BLB disease management strategies as well as crop insurance policy 

claims.  
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