Expressão de AKR1B10 e os efeitos citotóxicos da 22β-hidroxitingenona em carcinoma de células escamosas

Autores

DOI:

https://doi.org/10.53660/517.prw2002

Palavras-chave:

Anticâncer 1, Câncer de língua 2;, Salácia 3

Resumo

O câncer de língua provocado por carcinoma de células escamosas é um tipo de tumor de alta letalidade. Análises in silico demonstraram que genes como o AKR1B10 estão associados a mal prognóstico, portanto, substâncias inibidoras de AKR1B10 podem ser vantajosas. As espécies do gênero Salacia apresentam potencial ação anticâncer, diante disto, o objetivo desse estudo foi avaliar a ação da 22β-hidroxitingenona (22-HTG) contra as células cancerosas da língua e sua capacidade de inibir a expressão de AKR1B10. A triagem virtual da 22-HTG apontou interação da 22-HTG com o gene AKR1B10. O ensaio Alamar blue avaliou o efeito citotóxico contra CAL-27, o valor de IC50 foi de 5,15, 3,01 e 1,69 μM após 24, 48 e 72 h de incubação, respectivamente. Assim, 2,5μM de 22-HTG foi usada para avaliar alterações na morfologia celular. Após o tratamento de CAL-27 com 22-HTG, foi observado a redução (p<0.05) de células viáveis e o aumento (p<0.05) de células em apoptose. Os dados sugerem que a 22-HTG é possível inibidor do gene AKR1B10, servindo como agente terapêutico ou como um modelo para o desenvolvimento de novas estruturas químicas que sejam úteis no tratamento de câncer da cavidade oral.

Downloads

Não há dados estatísticos.

Biografia do Autor

Kriscia Parente, Universidade Federal do Amazonas

Possui graduação em Farmácia pela Universidade de Fortaleza (2012), Especialização em Hematologia Clínica e mestrado em Ciências Médicas pela Universidade Federal do Ceará (2017). Atualmente é doutoranda em Inovação Farmacêutica pela Universidade Federal do Amazonas (UFAM). Foi professor titular do Centro Universitário do Norte - UNINORTE (2018 a 2019). Tem experiência na área de Farmácia, com ênfase em Farmácia Hospitalar, atuando em dois hospitais, sendo um público (Hospital Geral de Fortaleza) e um privado (Hospital Antônio Prudente - HapVida).

Leilane Mendonça, Universidade Federal do Amazonas, Brasil

Graduada em Farmácia pela Universidade Federal do Amazonas, UFAM, Brasil (2016), Mestrado em Ciências Farmacêuticas pela Universidade Federal do Amazonas, UFAM, Brasil (2018), Doutorado em andamento em Inovação Farmacêutica pela Universidade Federal do Amazonas, UFAM, Brasil e Pós-graduação em Análises Clínicas e Toxicológicas pelo Centro Universitário do Norte, Uninorte, Brasil (2018). Possui atuação em pesquisas científicas realizadas em Manaus - Amazonas, na linha de Farmacologia Clínica e Básica com ênfase em Oncologia Experimental e Clínica e Análises Clínicas para avaliação de dano ao DNA em células não neoplásicas e neoplásicas, bem como, modelos tridimensionais de cultura celular com ênfase em pele humana reconstruída in vitro na Universidade Federal do Amazonas.

Tallita Machado, Universidade Federal do Amazonas, Brasil

Possui mestrado em Ciências Farmacêuticas pelo Programa de Pós-graduação em Ciências Farmacêuticas (2018), graduação em Farmácia pela Universidade Federal do Amazonas (2016) e curso técnico em química pelo Instituto Federal de Educação, Ciência e Tecnologia do Amazonas (2009). Atualmente é doutoranda do Programa de Pós-graduação em Inovação Farmacêutica da Universidade Federal do Amazonas. Desenvolve pesquisas na área de Química, com ênfase em Química dos Produtos Naturais e modificação molecular de fitocompostos orientadas ou não por ancoragem molecular com foco no desenvolvimento de novos protótipos de fármacos anticâncer.

Élenn Aranha, Universidade Federal do Amazonas, Brasil

Possui graduação em Ciências Biológicas pela Universidade Federal do Pará (2010), mestrado em Ciências Farmacêuticas (2014) e doutorado em Biodiversidade e Biotecnologia (2020), ambos pela Universidade Federal do Amazonas. Foi professora na Universidade Nilton Lins (2017-2019) e professora voluntária na Universidade do Estado Amazonas (2016-2017). Possui domínio de técnicas de cultivo celular, incluindo modelo de cultura 3D. Realiza pesquisas com produtos naturais, investigando a atividade biológica e a toxicidade de compostos e ativos isolados de plantas. Atualmente participa como voluntária do Laboratório de Biologia Molecular (LABIMOL) da Universidade Federal do Oeste Pará atuando no diagnóstico da COVID-19.

Héctor Koolen, Universidade do Estado do Amazonas

Natural de Manaus - AM, possui Graduação em Química (2009) e Mestrado em Química Orgânica (2011) pela Universidade Federal do Amazonas (UFAM) e Doutorado em Química pela Universidade Estadual de Campinas (UNICAMP). Durante o doutoramento realizou estágio sanduíche na área de Química Ambiental e Marinha no Woods Hole Oceanographic Institution (WHOI) sob a orientação do Dr. Christopher Reddy. Em 2015 realizou estágio de Pós-Doutoramento em Química Orgânica na UFAM. De 2015 a 2017 coordenou o Grupo Temático de Pesquisa em Química de Alimentos do Centro de Biotecnologia da Amazônia (CBA). Atualmente é professor Adjunto C do curso de Ciências Biológicas da Universidade do Estado do Amazonas (UEA), onde leciona as disciplinas de Química Orgânica e Bioquímica. É pesquisador líder do Grupo de Pesquisas em Metabolômica e Espectrometria de Massas (MMSRG) da UEA. Desenvolve pesquisas em Química Orgânica, Química de Alimentos e Biotecnologia, sempre com uma visão multidisciplinar e tendo como principal foco, a Bioprospecção de Produtos Naturais por meio da aplicação de abordagens Metabolômicas com Espectrometria de Massas, Cromatografia, Métodos Computacionais e de Biologia Molecular. Em especial, o pesquisador foca em moléculas de Microrganismos, Plantas e Artrópodes. Por levantar a bandeira da conservação da Amazônia, o pesquisador também desenvolve pesquisas de forma colaborativa na caracterização de poluentes no meio ambiente (Química Ambiental). Em suas pesquisas e publicações, temas como a Química de Íons em Fase Gasosa, cálculos DFT/Docking Molecular, Redes Moleculares, Farmacologia de Produtos Naturais, Biossíntese, Estereoquímica e Elucidações Estruturais de Produtos Naturais por Espectroscopia de Ressonância Magnética Nuclear são recorrentes. Atualmente é membro do conselho editorial da revista Food Research International (6.47 JCR, 2020), editor de tópico da revista Pharmaceutics-MDPI (6.32 JCR, 2020) e editor de revisão da Frontiers in Analytical Sciences (lançada em 2021). Desde 2022 é editor associado da revista Frontiers in Natural Products. Possui bolsa de produtividade da UEA desde 2016, bem como é Bolsista de Produtividade do CNPq-2 desde 2021. Coordena desde 2020 o Programa de Doutorado em Biodiversidade e Biotecnologia da Rede Bionorte (PPG-BIONORTE) polo Amazonas.

Raquel Montenegro, Universidade Federal do Ceará

Possui graduação em Ciências Biológicas pela Universidade Federal do Ceará, mestrado em Farmacologia pela Universidade Federal do Ceará e doutorado sanduíche em Farmacologia pela Universidade Federal do Ceará/Universidade de Chicago. Pós doutorado na Universidade de Oxford. É membro afiliado da Academia Brasileira de Ciências e membro titular da Câmara de Saúde do Estado do Ceará. É professora de Bioquímica Médica e Farmacologia na Universidade Federal do Ceará. Tem experiência na área de Farmacologia, com ênfase em Oncologia, atuando principalmente nos seguintes temas: cultura de células,Farmacogenética, Epigenética, Biomarcadores, inibidores de quinase, Biologia Molecular e Biotecnologia.

Marne Vasconcellos, Universidade Federal do Amazonas, Brasil

Possui graduação em Farmácia pela Universidade Federal do Amazonas (2002), mestrado em Farmacologia pela Universidade Federal do Ceará (2004) e doutorado em Farmacologia pela Universidade Federal do Ceará (2007). Atualmente é professora Associado III da Universidade Federal do Amazonas. Tem experiência na área de Farmacologia clínica e em Oncologia Experimental, atuando principalmente nos seguintes temas: oncologia experimental, citotoxicidade, genotoxicidade e métodos alternativos a experimentação animal.

Referências

AHMED SA, GOGAL RM, JR, WALSH JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods 1994;170:211–24. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/0022175994903964

ARANHA ESP, DA SILVA EL, MESQUITA FP, DE SOUSA LB, DA SILVA FMA, ROCHA WC, LIMA ES, KOOLEN HHF, DE MORAIS MEA, MONTENEGRO RC, de Vasconcellos, MC. 22β-hydroxytingenone reduces proliferation and invasion of human melanoma cells. In Vitro Toxicology 2020, 6 Disponível em: https://www.sciencedirect.com/science/article/pii/S0887233319307015

ARANHA, ESP, DE SOUSA PORTILHO AJ, DE SOUSA LB, DA SILVA EL, MESQUITA FP, ROCHA WC, DA SILVA FMA, LIMA ES, ALVES APNN, KOOLEN HHF, MONTENEGRO RC, DE VASCONCELLOS MC. 22β-hydroxytingenone induces apoptosis and suppresses invasiveness of melanoma cells by inhibiting MMP-9 activity and MAPK signaling. Journal of Ethnopharmacology 2021, 267, 113605. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378874120334930

CAMPBELL BR, NETTERVILLE JL, SINARD RJ, MANNION K, ROHDE SL, LANGERMAN A, ET AL. Early onset oral tongue cancer in the United States: A literature review. Oral Oncology 2018 Dec;87:1-7. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1368837518303634

CAO DF, CHUNG SS. Identification and characterization of a novel human aldose reductase-like gene. J Biol Chem. Disponível em: 1998;273:11429-11435. https://www.jbc.org/article/S0021-9258(19)89339-0/fulltext

CEVATEMRE B, BOTTA B, MORI M, BERARDOZZI S, INGALLINA C, ULUKAYA E. The plant-derived triterpenoid tingenin B is a potent anticancer agent due to its cytotoxic activity on cancer stem cells of breast cancer in vitro. Chemico-Biological Interactions 2016, 260, 248-255. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0009279716304239

CHANG WM, CHANG YC, YANG YC, LIN SK, CHANG PMH, HSIAO M. AKR1C1 controls cisplatin-resistance in head and neck squamous cell carcinoma through cross-talk with the STAT1/3 signaling pathway. Journal of Experimental & Clinical Cancer Research (2019) 38:245. Disponível em: https://jeccr.biomedcentral.com/articles/10.1186/s13046-019-1256-2

KO, HH, PENG, HH, CHENG, SJ E KUO, MYP. ncreased salivary AKR1B10 level: association with progression and poor prognosis of oral squamous cell carcinoma. Head & Neck 2018, 40 (12), 2642-2647. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/hed.25370

DAINA A, MICHIELIN O, ZOETE V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports 2017, 7(1), 42717. Disponível em: https://www.nature.com/articles/srep42717

FANG WY, KUO YZ, CHANG JY, HSIAO, J.-R.; KAO, H.-Y.; TSAI, S.-T.; WU, L.-W. The Tumor Suppressor TGFBR3 Blocks Lymph Node Metastasis in Head and Neck Cancer. Canceres 2020 , 12 , 1375. Disponível em: https://www.mdpi.com/2072-6694/12/6/1375

GALI-MUHTASIB H, HMADI R, KAREH M, TOHME R, DARWICHE N. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis. Apoptosis 2015, 20, 1531–1562. Disponível em: https://link.springer.com/article/10.1007/s10495-015-1169-2

GFELLER D, GROSDIDIER A, WIRTH M, DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: um servidor web para previsão de alvos de pequenas moléculas bioativas. Pesquisa de ácidos nucleicos 2014, 42, 32-38. Disponível em: https://academic.oup.com/nar/article/42/W1/W32/2435215?login=false

GU Y, LIU H, KONG F, YE1 J, JIA X, ZHANG Z, LI1 N, YIN J, ZHENG G, HE Z. miR-22/KAT6B axis is a chemotherapeutic determiner via regulation of PI3k-Akt-NF-kB pathway in tongue squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research 2018, 37:164. Disponível em: https://jeccr.biomedcentral.com/articles/10.1186/s13046-018-0834-z

HUI-HSIN KO, SHIH-LUNG CHENG, JANG-JAER LEE, HSIN-MING CHEN, DDS, MS, PHD, MARK YEN-PING KUO, DDS, PHD, SHIH-JUNG CHENG. Expression of AKR1B10 as an independent marker for poor prognosis in human oral squamous cell carcinoma. Journal of the sciences and specialties of the head and neck 2017, 39(7):1327-1332. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/hed.24759

JANK BJ, LENZ T, HAAS M, KADLETZ-WANKE L, CAMPION NJ, SCHNOELL J, HEIDUSCHKA G, MACFELDA K. Radiosensitizing effect of galunisertib, a TGF-ß receptor I inhibitor, on head and neck squamous cell carcinoma in vitro. Invest New Drugs 40, 478–486 (2022). Disponível em: https://link.springer.com/article/10.1007/s10637-021-01207-1

KIM Y, KANG H, JANG S, KO J. Celastrol inhibits breast cancer cell invasion via suppression of NF-kB -mediated matrix metalloproteinase-9 expression. Cell. Physiol. Biochem 2011. 701, 175–184. Disponível em: https://web.archive.org/web/20190502130254id_/https://www.karger.com/Article/Pdf/331729

LAFFIN B., PETRASH JM. Expression of the aldo-ketoreductases AKR1B1 and AKR1B10 in human cancers. Frontiers in pharmacology 2012, 3, 104. Disponível em: https://www.frontiersin.org/articles/10.3389/fphar.2012.00104/full

LEE SK, CHANG GS, LEE IH, CHUNG JE, SUNG KY, NO KT. The PreADME: PC-Based program for batch prediction of adme properties, EuroQSAR, v. 9, p. 5-10, Istanbul, Turkey, 2004. Disponível em: https://preadmet.webservice.bmdrc.org/

LI HUANG, RONGZHANG HE, WEIHAO LUO, YUAN-SHAN ZHU, JIA LI, TAN TAN, XI ZHANG, ZHENG HU, DIXIAN LUO. Aldo-Keto reductase Family 1 member B10 inhibitors: Potential drugs for cancer treatment. Recent Patents on Anti-Cancer Drug Discovery, 2016, 11(2), 184-196. Disponível em: https://www.ingentaconnect.com/content/ben/pra/2016/00000011/00000002/art00005

LIU J, BAN H, LIU Y, NI, J. The expression and signifcance ofAKR1B10 in laryngeal squamous cell carcinoma. Scientific reports 2021, 11 (1), 1-12. Disponível em: https://link.springer.com/content/pdf/10.1038/s41598-021-97648-y.pdf

MAYER AM, HAMANN MT. Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Marine Biotechnology 2004, 6, 37-52. Disponível em: https://link.springer.com/article/10.1007/s10126-003-0007-7

MAHNASHI, MH, ALQAHTANI, YS, ALQARNI AO, ALYAMI BA, JAN MS, AYAZ M, ULLAH F, RASHID U, SADIQ A. Crude extract and isolated bioactive compounds from Notholirion thomsonianum (Royale) Stapf as multitargets antidiabetic agents: in-vitro and molecular docking approaches. BMC Complement Med Ther 2021, 21, 270. Disponível em: https://link.springer.com/article/10.1186/s12906-021-03443-7

MOSMANN T. Ensaio colorimétrico rápido para crescimento e sobrevivência celular: aplicação a ensaios de proliferação e citotoxicidade. J Immunol Methods. 1983; 65 :55–63. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/0022175983903034

NASTASĂ C, TAMAIAN R, ONIGA O, TIPERCIUC B. 5-Arylidene (chromenyl-methylene)-thiazolidinediones: potential new agents against mutant oncoproteins K-Ras, N-Ras and B-Raf in colorectal cancer and melanoma. Medicina 2019, 55(4), 85. Disponível em: https://www.mdpi.com/1648-9144/55/4/85

RIBBLE D, GOLDSTEIN NB, NORRIS DA, SHELLMAN YG. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnology 2005, 5:12. Disponível em: https://bmcbiotechnol.biomedcentral.com/articles/10.1186/1472-6750-5-12

RODRIGUES ACBDC, DE OLIVEIRA FP, DIAS RB, SALES CB, ROCHA CA, SOARES MB, COSTA EV, DA SILVA FMA, ROCHA WC, KOOLEN HHF, BEZERRA DP. In vitro and in vivo anti-leukemia activity of the stem bark of Salacia impressifolia (Miers) AC Smith (Celastraceae). Journal of ethnopharmacology 2019, 231, 516-524. Disponível em: https://bmcbiotechnol.biomedcentral.com/articles/10.1186/1472-6750-5-12

RUIZ FX, COUSIDO-SIAH A, PORTO S, DOMÍNGUEZ M, CRESPO I, RECHLIN C, MITSCHLER A, LERA AR, MARTÍN MJ, LA FUENTE JÁ, KLEBE G, PAROS X, FARROS J, PODJARNY A. Structural Determinants of the Selectivity of 3- Benzyluracil-1-acetic Acids toward Human Enzymes Aldose Reductase and AKR1B10. ChemMedChem 2015, 10, 1989 – 2003. Disponível em: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.201500393

PENNING TM. The aldo-keto reductases (AKRs): overview. Chem Biol Inter- act. 2015; 234:236-246. Diponível em: https://www.sciencedirect.com/science/article/abs/pii/S0009279714002737

SHEVKAR C., ARMARKAR A., WEERASINGHE R., MADURANGA K., PARANAGAMA P., PANDEY K., BEHERA S. K., KATE A. S. (2022). Cytotoxic Bioxanthracene and Macrocyclic Polyester from Endolichenic Fungus Talaromyces pinophilus: In-Vitro and In-Silico Analysis. Indian Journal of Microbiology, 1-11. Disponível em: https://link.springer.com/article/10.1007/s12088-021-00994-8

SORKIN BC, KUSZAK AJ, BLOSS G, FUKAGAWA NK, HOFFMAN FA, JAFARI M, BARRETT B, BROWN PN, BUSHMAN FD, CASPER SJ, CHILTON FH, COFFEY CS, FERRUZZI MG, HOPP DC, KIELY M, LAKENS D, MACMILLAN JB, MELTZER DO, PAHOR M, PAUL J, PRITCHETT-CORNING K, QUINNEY SK, REHERMANN B, SETCHELL KDR, SIPES NS, STEPHENS JM, TAYLOR DL, TIRIAC H, WALTERS MA, XI D, ZAPPALÁ G, PAULI GF. Improving natural product research translation: From source to clinical trial. FASEB J. 2020, 34(1):41-65. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470648/

THOMFORD NE, SENTHEBANE DA, ROWE A, MUNRO D, SEELE P, MAROYI A, DZOBO K. Natural Products for Drug Discovery in the 21st Century: Innovations for New Drug Discovery . International Journal of Molecular Sciences, 2018, 19(6), 1578. Disponível em: https://www.mdpi.com/1422-0067/19/6/1578

TROTT O, OLSON AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010, 30;31(2):455-61. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21334

WANG H, KUI-WU W. Lupene-type triterpenoids from Celastrus oblanceifolius. Chemistry of Natural Compounds 2016, 52:764-765. Disponível em: https://link.springer.com/article/10.1007/s10600-016-1769-2

WARNAKULASURIYA, S. Viver com câncer bucal: epidemiologia com referência particular à prevalência e mudanças no estilo de vida que influenciam a sobrevivência. Oral oncology 2010, 46 (6), 407-410. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S136883751000062X

WU Y, WANG J, ZHAO J, ZHANG Y, SUN Y, CHEN J, WANG J. Gene regulation analysis of the effects of evodiamine on tongue squamous cell carcinoma. Journal of Cell Biochem 2019, 120:15933-15940. Disponível em: https://onlinelibrary.wiley.com/doi/full/10.1002/jcb.28869

Yadav VR, Sung B, Prasad S, Kannappan R, Cho SG, Liu M, Chaturvedi MM, Aggarwal BB. Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. J. Mol. Med. (Berl) 2010, 88, 1243–1253. Disponível em: https://link.springer.com/article/10.1007/s00109-010-0669-3

Yang X, Zhao H, Yang J, Ma Y, Liu Z, Li C, WANG T, YAN Z, Du N. MiR-150-5p regulates melanoma proliferation, invasion, and metastasis via the SIX1-mediated Warburg Effect . Biochemical and Biophysical Research Communications 2019, 515(1), 85-91. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0006291X19309970

Downloads

Publicado

2023-06-14

Como Citar

Parente, K., Mendonça, L. ., Machado, T., Aranha, Élenn ., Koolen, H., Montenegro, R. ., & Vasconcellos, M. . (2023). Expressão de AKR1B10 e os efeitos citotóxicos da 22β-hidroxitingenona em carcinoma de células escamosas. Peer Review, 5(12), 320–337. https://doi.org/10.53660/517.prw2002

Edição

Seção

Artigos